This file is indexed.

/usr/include/CGAL/leda_rational.h is in libcgal-dev 4.2-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
// Copyright (c) 1999,2007  
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved. 
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s)     : Andreas Fabri, Michael Hemmer

#ifndef CGAL_LEDA_RATIONAL_H
#define CGAL_LEDA_RATIONAL_H

#include <CGAL/number_type_basic.h>

#ifdef CGAL_USE_LEDA

#include <CGAL/leda_coercion_traits.h>
#include <CGAL/Interval_nt.h>

#include <CGAL/Needs_parens_as_product.h>

#include <utility>

#include <CGAL/LEDA_basic.h>
#if CGAL_LEDA_VERSION < 500
#  include <LEDA/rational.h>
#  include <LEDA/interval.h>
#else
#  include <LEDA/numbers/rational.h>
#  if defined(  _MSC_VER )
#    pragma push_macro("ERROR")  
#    undef ERROR
#  endif // _MSC_VER
#  include <LEDA/numbers/interval.h>
#  if defined(  _MSC_VER )
#    pragma pop_macro("ERROR")  
#  endif
#endif

#include <CGAL/leda_integer.h> // for GCD in Fraction_traits

namespace CGAL {

template <> class Algebraic_structure_traits< leda_rational >
  : public Algebraic_structure_traits_base< leda_rational,
                                            Field_tag >  {
  public:
    typedef Tag_true            Is_exact;
    typedef Tag_false           Is_numerical_sensitive;

//    TODO: How to implement this without having sqrt?
//    typedef INTERN_AST::Is_square_per_sqrt< Type >
//                                                                 Is_square;

    class Simplify
      : public std::unary_function< Type&, void > {
      public:
        void operator()( Type& x) const {
            x.normalize();
        }
    };

};

template <> class Real_embeddable_traits< leda_rational >
  : public INTERN_RET::Real_embeddable_traits_base< leda_rational , CGAL::Tag_true > {
  public:
  
    class Abs
      : public std::unary_function< Type, Type > {
      public:
        Type operator()( const Type& x ) const {
            return CGAL_LEDA_SCOPE::abs( x );
        }
    };

    class Sgn
      : public std::unary_function< Type, ::CGAL::Sign > {
      public:
        ::CGAL::Sign operator()( const Type& x ) const {
            return (::CGAL::Sign) CGAL_LEDA_SCOPE::sign( x );
        }
    };

    class Compare
      : public std::binary_function< Type, Type,
                                Comparison_result > {
      public:
        Comparison_result operator()( const Type& x,
                                      const Type& y ) const {
          return (Comparison_result) CGAL_LEDA_SCOPE::compare( x, y );
        }
        CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT(Type,Comparison_result)
    };

    class To_double
      : public std::unary_function< Type, double > {
      public:
        double operator()( const Type& x ) const {
          return x.to_double();
        }
    };

    class To_interval
      : public std::unary_function< Type, std::pair< double, double > > {
      public:
        std::pair<double, double> operator()( const Type& x ) const {

#if CGAL_LEDA_VERSION >= 501
          CGAL_LEDA_SCOPE::interval temp(x);
          std::pair<double, double> result(temp.lower_bound(),temp.upper_bound());
          CGAL_postcondition(Type(result.first)<=x);
          CGAL_postcondition(Type(result.second)>=x);
          return result;
#else
          CGAL_LEDA_SCOPE::bigfloat xnum = x.numerator();
          CGAL_LEDA_SCOPE::bigfloat xden = x.denominator();
          CGAL_LEDA_SCOPE::bigfloat xupp =
                                    div(xnum,xden,53,CGAL_LEDA_SCOPE::TO_P_INF);
          CGAL_LEDA_SCOPE::bigfloat xlow =
                                    div(xnum,xden,53,CGAL_LEDA_SCOPE::TO_N_INF);

          // really smallest positive double
          double MinDbl = CGAL_LEDA_SCOPE::fp::compose_parts(0,0,0,1);

          double low = xlow.to_double();
          while(Type(low) > x) low = low - MinDbl;

          double upp = xupp.to_double();
          while(Type(upp) < x) upp = upp + MinDbl;

          std::pair<double, double> result(low,upp);
          CGAL_postcondition(Type(result.first)<=x);
          CGAL_postcondition(Type(result.second)>=x);
          return result;
#endif
          // Original CGAL to_interval (seemed to be inferior)
          //  // There's no guarantee about the error of to_double(), so I add
          //  //  3 ulps...
          //  Protect_FPU_rounding<true> P (CGAL_FE_TONEAREST);
          //  Interval_nt_advanced approx (z.to_double());
          //  FPU_set_cw(CGAL_FE_UPWARD);
          //
          //  approx += Interval_nt<false>::smallest();
          //  approx += Interval_nt<false>::smallest();
          //  approx += Interval_nt<false>::smallest();
          //  return approx.pair();

        }
    };
};

/*! \ingroup NiX_Fraction_traits_spec
 *  \brief Specialization of Fraction_traits for ::leda::rational
 */
template <>
class Fraction_traits< leda_rational > {
public:
    typedef leda_rational Type;
    typedef ::CGAL::Tag_true Is_fraction;
    typedef leda_integer Numerator_type;
    typedef Numerator_type Denominator_type;

    typedef Algebraic_structure_traits< Numerator_type >::Gcd Common_factor;

    class Decompose {
    public:
        typedef Type first_argument_type;
        typedef Numerator_type& second_argument_type;
        typedef Numerator_type& third_argument_type;
        void operator () (
                const Type& rat,
                Numerator_type& num,
                Numerator_type& den) {
            num = rat.numerator();
            den = rat.denominator();
        }
    };

    class Compose {
    public:
        typedef Numerator_type first_argument_type;
        typedef Numerator_type second_argument_type;
        typedef Type result_type;
        Type operator ()(
                const Numerator_type& num ,
                const Numerator_type& den ) {
            Type result(num, den);
            result.normalize();
            return result;
        }
    };
};

template <class F>
class Output_rep< leda_rational, F> {
    const leda_rational& t;
public:
    //! initialize with a const reference to \a t.
    Output_rep( const leda_rational& tt) : t(tt) {}
    //! perform the output, calls \c operator\<\< by default.
    std::ostream& operator()( std::ostream& out) const {
        switch (get_mode(out)) {
        case IO::PRETTY:{
            if(t.denominator() == leda_integer(1))
                return out <<t.numerator();
            else
                return out << t.numerator()
                           << "/"
                           << t.denominator();
            break;
        }

        default:
            return out << t.numerator()
                       << "/"
                       << t.denominator();
        }
    }
};

template <>
struct Needs_parens_as_product< leda_rational >{
    bool operator()( leda_rational t){
        if (t.denominator() != 1 )
            return true;
        else
            return needs_parens_as_product(t.numerator()) ;
    }
};

template <>
class Output_rep< leda_rational, Parens_as_product_tag > {
    const leda_rational& t;
public:
    // Constructor
    Output_rep( const leda_rational& tt) : t(tt) {}
    // operator
    std::ostream& operator()( std::ostream& out) const {
        Needs_parens_as_product< leda_rational > needs_parens_as_product;
        if (needs_parens_as_product(t))
            return out <<"("<< oformat(t) <<")";
        else
            return out << oformat(t);
    }
};

template < >
class Benchmark_rep< leda_rational > {
    const leda_rational& t;
public:
    //! initialize with a const reference to \a t.
    Benchmark_rep( const leda_rational& tt) : t(tt) {}
    //! perform the output, calls \c operator\<\< by default.
    std::ostream& operator()( std::ostream& out) const { 
            return 
                out << "Rational(" << t.numerator() << "," 
                    << t.denominator() << ")";
    }

    static std::string get_benchmark_name() {
        return "Rational";
    }

};


} //namespace CGAL

// Unary + is missing for leda::rational
namespace leda{
inline rational operator+( const rational& i) { return i; }
}

//since types are included by leda_coercion_traits.h:
#include <CGAL/leda_integer.h>
#include <CGAL/leda_rational.h>
#include <CGAL/leda_bigfloat.h>
#include <CGAL/leda_real.h>
#include <CGAL/LEDA_arithmetic_kernel.h>

#endif // CGAL_USE_LEDA

#endif  // CGAL_LEDA_RATIONAL_H