/usr/include/CGAL/min_quadrilateral_2.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 | // Copyright (c) 1999-2003 ETH Zurich (Switzerland).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Michael Hoffmann <hoffmann@inf.ethz.ch> and
// Emo Welzl <emo@inf.ethz.ch>
#ifndef CGAL_MIN_QUADRILATERAL_2_H
#define CGAL_MIN_QUADRILATERAL_2_H 1
#include <CGAL/basic.h>
#include <CGAL/Optimisation/assertions.h>
#include <iterator>
#include <boost/bind.hpp>
#include <boost/function.hpp>
#ifdef CGAL_OPTIMISATION_EXPENSIVE_PRECONDITION_TAG
#include <CGAL/Polygon_2_algorithms.h>
#endif
namespace CGAL {
template < class ForwardIterator, class OutputIterator, class Traits >
OutputIterator
convex_bounding_box_2(
ForwardIterator f, ForwardIterator l, OutputIterator o, Traits& t)
// PRE:
// * f != l
// * value type of ForwardIterator is Traits::Point_2
// * [f,l) form a the vertices of a convex polygon
// oriented counterclockwise
// * OutputIterator accepts ForwardIterator as value type
// POST:
// writes to o iterators from [f,l) referring to the last points with
// - smallest y coordinate
// - largest x coordinate
// - largest y coordinate
// - smallest x coordinate
// in that order.
{
CGAL_precondition(f != l);
// make sure that we have two distinct points, such that it
// can be determined in which quadrant of the polygon we are
ForwardIterator first;
do {
first = f;
// catch the one-element case:
if (++f == l) {
f = first;
break;
}
} while (t.equal_2_object()(*first, *f));
// Four extremes
ForwardIterator minx = first;
ForwardIterator maxx;
ForwardIterator miny;
ForwardIterator maxy;
typedef typename Traits::Point_2 Point_2;
typedef typename Traits::Less_xy_2 Less_xy_2;
typedef typename Traits::Less_yx_2 Less_yx_2;
typedef boost::function2<bool,Point_2,Point_2> Greater_xy_2;
typedef boost::function2<bool,Point_2,Point_2> Greater_yx_2;
Less_xy_2 less_xy_2 = t.less_xy_2_object();
Less_yx_2 less_yx_2 = t.less_yx_2_object();
Greater_xy_2 greater_xy_2 = boost::bind(less_xy_2, _2, _1);
Greater_yx_2 greater_yx_2 = boost::bind(less_yx_2, _2, _1);
if (less_xy_2(*minx, *f) ||
(less_yx_2(*minx, *f) && !less_xy_2(*f, *minx)))
if (less_yx_2(*minx, *f))
// first quadrant
for (;;) {
maxx = f;
if (++f == l) {
maxy = minx = miny = maxx;
break;
}
if (less_xy_2(*f, *maxx)) {
f = maxx;
for (;;) {
maxy = f;
if (++f == l) {
minx = miny = maxy;
break;
}
if (less_yx_2(*f, *maxy)) {
f = maxy;
for (;;) {
minx = f;
if (++f == l) {
miny = minx;
break;
}
if (greater_xy_2(*f, *minx)) {
f = minx;
do
miny = f;
while (++f != l && !greater_yx_2(*f, *miny));
break;
}
} // for (;;)
break;
} // if (less_yx_2(*f, *maxy))
} // for (;;)
break;
} // if (less_xy_2(*f, *maxx))
} // for (;;)
else
// fourth quadrant
for (;;) {
miny = f;
if (++f == l) {
maxx = maxy = minx = miny;
break;
}
if (greater_yx_2(*f, *miny)) {
f = miny;
for (;;) {
maxx = f;
if (++f == l) {
maxy = minx = maxx;
break;
}
if (less_xy_2(*f, *maxx)) {
f = maxx;
for (;;) {
maxy = f;
if (++f == l) {
minx = maxy;
break;
}
if (less_yx_2(*f, *maxy)) {
f = maxy;
do
minx = f;
while (++f != l && !greater_xy_2(*f, *minx));
break;
}
} // for (;;)
break;
} // if (less_xy_2(*f, *maxx))
} // for (;;)
break;
} // if (greater_yx_2(*f, *miny))
} // for (;;)
else
if (less_yx_2(*f, *minx))
// third quadrant
for (;;) {
minx = f;
if (++f == l) {
miny = maxx = maxy = minx;
break;
}
if (greater_xy_2(*f, *minx)) {
f = minx;
for (;;) {
miny = f;
if (++f == l) {
maxx = maxy = miny;
break;
}
if (greater_yx_2(*f, *miny)) {
f = miny;
for (;;) {
maxx = f;
if (++f == l) {
maxy = maxx;
break;
}
if (less_xy_2(*f, *maxx)) {
f = maxx;
do
maxy = f;
while (++f != l && !less_yx_2(*f, *maxy));
break;
}
} // for (;;)
break;
} // if (greater_yx_2(*f, *miny))
} // for (;;)
break;
} // if (greater_xy_2(*f, *minx))
} // for (;;)
else
// second quadrant
for (;;) {
maxy = f;
if (++f == l) {
minx = miny = maxx = maxy;
break;
}
if (less_yx_2(*f, *maxy)) {
f = maxy;
for (;;) {
minx = f;
if (++f == l) {
miny = maxx = minx;
break;
}
if (greater_xy_2(*f, *minx)) {
f = minx;
for (;;) {
miny = f;
if (++f == l) {
maxx = miny;
break;
}
if (greater_yx_2(*f, *miny)) {
f = miny;
do
maxx = f;
while (++f != l && !less_xy_2(*f, *maxx));
break;
}
} // for (;;)
break;
} // if (greater_xy_2(*f, *minx))
} // for (;;)
break;
} // if (less_yx_2(*f, *maxy))
} // for (;;)
// Output
*o++ = less_yx_2(*first, *miny) ? first : miny;
*o++ = less_xy_2(*maxx, *first) ? first : maxx;
*o++ = less_yx_2(*maxy, *first) ? first : maxy;
*o++ = less_xy_2(*first, *minx) ? first : minx;
return o;
} // convex_bounding_box_2(f, l, o, t)
namespace Optimisation {
// Adds certain redundant functionality for convenience
template < typename Traits >
struct Min_quadrilateral_traits_wrapper : public Traits
{
typedef Traits Base;
// types inherited from Traits
typedef typename Base::Point_2 Point_2;
typedef typename Base::Direction_2 Direction_2;
// predicates and constructions inherited from Traits
typedef typename Base::Has_on_negative_side_2 HONS;
typedef typename Base::Construct_vector_2 CV2;
typedef typename Base::Construct_direction_2 CD2;
typedef typename Base::Construct_line_2 Construct_line_2;
typedef typename Base::Compare_angle_with_x_axis_2 CAWXA;
using Traits::has_on_negative_side_2_object;
using Traits::construct_line_2_object;
using Traits::construct_vector_2_object;
using Traits::compare_angle_with_x_axis_2_object;
Min_quadrilateral_traits_wrapper(const Traits& bt) : Base(bt) {}
// ---------------------------------------------------------------
// Right_of_implicit_line_2
// ---------------------------------------------------------------
typedef boost::function3<bool,Point_2,Point_2,Direction_2>
Right_of_implicit_line_2;
Right_of_implicit_line_2 right_of_implicit_line_2_object() const {
return boost::bind(has_on_negative_side_2_object(),
boost::bind(construct_line_2_object(), _2, _3),
_1);
}
typedef boost::function2<Direction_2,Point_2,Point_2>
Construct_direction_2;
Construct_direction_2 construct_direction_2_object() const {
return boost::bind(Base::construct_direction_2_object(),
boost::bind(construct_vector_2_object(), _1, _2));
}
template < class Kernel >
class Rdbmop
: public std::binary_function< Direction_2, int, Direction_2 >
{
typename Kernel::Construct_perpendicular_vector_2 cperpvec;
typename Kernel::Construct_vector_from_direction_2 cvec;
typename Kernel::Construct_direction_2 dir;
typename Kernel::Construct_opposite_direction_2 oppdir;
public:
Rdbmop() {}
Rdbmop(const Kernel& k)
: cperpvec(k.construct_perpendicular_vector_2_object()),
cvec(k.construct_vector_from_direction_2_object()),
dir(k.construct_direction_2_object()),
oppdir(k.construct_opposite_direction_2_object())
{}
Direction_2
operator()(const Direction_2& d, int i) const
{
// FIXME: here I would like to construct a vector from a
// direction, but this is not in the kernel concept
// maybe, we can get rid of directions soon...
CGAL_precondition(i >= 0 && i < 4);
if (i == 0) return d;
if (i == 1) return dir(cperpvec(cvec(d), CLOCKWISE));
if (i == 2) return oppdir(d);
return dir(cperpvec(cvec(d), COUNTERCLOCKWISE));
}
};
typedef Rdbmop<Traits> Rotate_direction_by_multiple_of_pi_2;
Rotate_direction_by_multiple_of_pi_2
rotate_direction_by_multiple_of_pi_2_object() const
{ return Rotate_direction_by_multiple_of_pi_2(*this); }
typedef boost::function2<bool,Direction_2,Direction_2>
Less_angle_with_x_axis_2;
Less_angle_with_x_axis_2 less_angle_with_x_axis_2_object() const {
return boost::bind(std::equal_to<Comparison_result>(),
boost::bind(compare_angle_with_x_axis_2_object(),
_1, _2),
SMALLER);
}
};
} // namespace Optimisation
template < class ForwardIterator, class OutputIterator, class BTraits >
OutputIterator
min_rectangle_2(
ForwardIterator f,
ForwardIterator l,
OutputIterator o,
BTraits& bt)
{
typedef Optimisation::Min_quadrilateral_traits_wrapper<BTraits> Traits;
Traits t(bt);
CGAL_optimisation_expensive_precondition(is_convex_2(f, l, t));
CGAL_optimisation_expensive_precondition(
orientation_2(f, l, t) == COUNTERCLOCKWISE);
// check for trivial cases
if (f == l) return o;
ForwardIterator tst = f;
if (++tst == l) {
// all points are equal
for (int i = 0; i < 4; ++i) *o++ = *f;
return o;
}
// types from the traits class
typedef typename Traits::Rectangle_2 Rectangle_2;
typedef typename Traits::Direction_2 Direction_2;
typedef typename Traits::Construct_direction_2 Construct_direction_2;
typedef typename Traits::Construct_rectangle_2 Construct_rectangle_2;
Construct_direction_2 direction = t.construct_direction_2_object();
Construct_rectangle_2 rectangle = t.construct_rectangle_2_object();
typename Traits::Rotate_direction_by_multiple_of_pi_2
rotate = t.rotate_direction_by_multiple_of_pi_2_object();
typename Traits::Less_angle_with_x_axis_2
less_angle = t.less_angle_with_x_axis_2_object();
typename Traits::Area_less_rectangle_2
area_less = t.area_less_rectangle_2_object();
// quadruple of points defining the current rectangle
ForwardIterator curr[4];
// initialised to the points defining the bounding box
convex_bounding_box_2(f, l, curr, t);
// curr[i] can be advanced (cyclically) until it reaches limit[i]
ForwardIterator limit[4];
limit[0] = curr[1], limit[1] = curr[2],
limit[2] = curr[3], limit[3] = curr[0];
// quadruple of direction candidates defining the current rectangle
Direction_2 dir[4];
for (int i = 0; i < 4; i++) {
ForwardIterator cp = curr[i];
if (++cp == l)
cp = f;
dir[i] = rotate(direction(*(curr[i]), *cp), i);
}
int yet_to_finish = 0;
for (int i1 = 0; i1 < 4; ++i1) {
CGAL_optimisation_assertion(limit[i1] != l);
if (curr[i1] != limit[i1])
++yet_to_finish;
}
int low = less_angle(dir[0], dir[1]) ? 0 : 1;
int upp = less_angle(dir[2], dir[3]) ? 2 : 3;
int event = less_angle(dir[low], dir[upp]) ? low : upp;
Rectangle_2 rect_so_far =
rectangle(*(curr[0]), dir[event], *(curr[1]), *(curr[2]), *(curr[3]));
for (;;) {
if (++curr[event] == l)
curr[event] = f;
ForwardIterator cp = curr[event];
if (++cp == l)
cp = f;
dir[event] = rotate(direction(*(curr[event]), *cp), event);
if (curr[event] == limit[event])
if (--yet_to_finish <= 0)
break;
if (event < 2)
low = less_angle(dir[0], dir[1]) ? 0 : 1;
else
upp = less_angle(dir[2], dir[3]) ? 2 : 3;
event = less_angle(dir[low], dir[upp]) ? low : upp;
Rectangle_2 test_rect = rectangle(*(curr[0]), dir[event],
*(curr[1]), *(curr[2]), *(curr[3]));
if (area_less(test_rect, rect_so_far))
rect_so_far = test_rect;
} // for (;;)
return t.copy_rectangle_vertices_2(rect_so_far, o);
} // min_rectangle_2( f, l, o , t)
template < class ForwardIterator, class OutputIterator, class BTraits >
OutputIterator
min_parallelogram_2(ForwardIterator f,
ForwardIterator l,
OutputIterator o,
BTraits& bt)
{
typedef Optimisation::Min_quadrilateral_traits_wrapper<BTraits> Traits;
Traits t(bt);
CGAL_optimisation_expensive_precondition(is_convex_2(f, l, t));
// types from the traits class
typedef typename Traits::Direction_2 Direction_2;
typedef typename Traits::Parallelogram_2 Parallelogram_2;
typedef typename Traits::Construct_direction_2 Construct_direction_2;
typedef typename Traits::Equal_2 Equal_2;
Equal_2 equal = t.equal_2_object();
Construct_direction_2 direction = t.construct_direction_2_object();
typename Traits::Construct_parallelogram_2
parallelogram = t.construct_parallelogram_2_object();
typename Traits::Less_angle_with_x_axis_2
less_angle = t.less_angle_with_x_axis_2_object();
typename Traits::Area_less_parallelogram_2
area_less = t.area_less_parallelogram_2_object();
typename Traits::Right_of_implicit_line_2
right_of_line = t.right_of_implicit_line_2_object();
// check for trivial cases
if (f == l) return o;
ForwardIterator first;
do {
first = f;
if (++f == l) {
// all points are equal
for (int i = 0; i < 4; ++i) *o++ = *first;
return o;
}
} while (equal(*first, *f));
// quadruple of points defining the bounding box
ForwardIterator curr[4];
// initialised to the points defining the bounding box
convex_bounding_box_2(first, l, curr, t);
ForwardIterator low = curr[0];
ForwardIterator upp = curr[2];
ForwardIterator right = low;
ForwardIterator left = upp;
int yet_to_finish = 2;
// initialize parallelogram
ForwardIterator ln = low;
do
if (++ln == l)
ln = first;
while (equal(*ln, *low));
Direction_2 d_low = direction(*low, *ln);
ForwardIterator un = upp;
do
if (++un == l)
un = first;
while (equal(*un, *upp));
Direction_2 d_upp = direction(*un, *upp);
bool low_goes_next = less_angle(d_low, d_upp);
Direction_2 next_dir = low_goes_next ? d_low : d_upp;
Direction_2 d_leftright = next_dir;
for (;;) {
// compute the next left/right candidate and store it to d_leftright
ForwardIterator rig = right;
do
if (++rig == l)
rig = first;
while (equal(*rig, *right));
Direction_2 d_right = direction(*right, *rig);
ForwardIterator len = left;
do
if (++len == l)
len = first;
while (equal(*len, *left));
Direction_2 d_left = direction(*len, *left);
if (less_angle(d_right, d_left))
if (right_of_line(*rig, *left, next_dir))
right = rig;
else {
d_leftright = d_right;
break;
}
else
if (right_of_line(*right, *len, next_dir))
left = len;
else {
d_leftright = d_left;
break;
}
} // for (;;)
Parallelogram_2 para_so_far =
parallelogram(*low, next_dir, *right, d_leftright, *upp, *left);
for (;;) {
if (low_goes_next) {
low = ln;
if (low == curr[2])
if (--yet_to_finish <= 0)
break;
} else {
upp = un;
if (upp == curr[0])
if (--yet_to_finish <= 0)
break;
}
// compute the next lower/upper candidate
ln = low;
do
if (++ln == l)
ln = first;
while (equal(*ln, *low));
d_low = direction(*low, *ln);
un = upp;
do
if (++un == l)
un = first;
while (equal(*un, *upp));
d_upp = direction(*un, *upp);
low_goes_next = less_angle(d_low, d_upp);
next_dir = low_goes_next ? d_low : d_upp;
for (;;) {
// compute the next left/right candidate and store it to d_leftright
ForwardIterator rig = right;
do
if (++rig == l)
rig = first;
while (equal(*rig, *right));
Direction_2 d_right = direction(*right, *rig);
ForwardIterator len = left;
do
if (++len == l)
len = first;
while (equal(*len, *left));
Direction_2 d_left = direction(*len, *left);
if (less_angle(d_right, d_left))
if (right_of_line(*rig, *left, next_dir))
right = rig;
else {
d_leftright = d_right;
break;
}
else
if (right_of_line(*right, *len, next_dir))
left = len;
else {
d_leftright = d_left;
break;
}
} // for (;;)
// check whether we found a smaller parallelogram
Parallelogram_2 test_para =
parallelogram(*low, next_dir, *right, d_leftright, *upp, *left);
if (area_less(test_para, para_so_far))
para_so_far = test_para;
} // for (;;)
return t.copy_parallelogram_vertices_2(para_so_far, o);
} // min_parallelogram_2(f, l, o , t)
template < class ForwardIterator, class OutputIterator, class BTraits >
OutputIterator
min_strip_2(ForwardIterator f,
ForwardIterator l,
OutputIterator o,
BTraits& bt)
{
typedef Optimisation::Min_quadrilateral_traits_wrapper<BTraits> Traits;
Traits t(bt);
CGAL_optimisation_expensive_precondition(is_convex_2(f, l, t));
// types from the traits class
typedef typename Traits::Direction_2 Direction_2;
typedef typename Traits::Strip_2 Strip_2;
typedef typename Traits::Equal_2 Equal_2;
typedef typename Traits::Construct_direction_2 Construct_direction_2;
typedef typename Traits::Construct_strip_2 Construct_strip_2;
typedef typename Traits::Width_less_strip_2 Width_less_strip_2;
Equal_2 equal = t.equal_2_object();
Construct_direction_2 direction = t.construct_direction_2_object();
Construct_strip_2 strip = t.construct_strip_2_object();
Width_less_strip_2 width_less = t.width_less_strip_2_object();
typename Traits::Less_angle_with_x_axis_2
less_angle = t.less_angle_with_x_axis_2_object();
// check for trivial cases
if (f == l) return o;
ForwardIterator first;
do {
first = f;
if (++f == l)
// strip undefined, if no two distinct points exist
return o;
} while (equal(*first, *f));
// quadruple of points defining the bounding box
ForwardIterator curr[4];
// initialised to the points defining the bounding box
convex_bounding_box_2(first, l, curr, t);
ForwardIterator low = curr[0];
ForwardIterator upp = curr[2];
int yet_to_finish = 2;
ForwardIterator nlow = low;
if (++nlow == l)
nlow = first;
Direction_2 low_dir = direction(*low, *nlow);
ForwardIterator nupp = upp;
if (++nupp == l)
nupp = first;
Direction_2 upp_dir = direction(*nupp, *upp);
bool low_goes_next = less_angle(low_dir, upp_dir);
Strip_2 strip_so_far = low_goes_next ?
strip(*low, low_dir, *upp) : strip(*low, upp_dir, *upp);
for (;;) {
// compute next direction
if (low_goes_next) {
low = nlow;
if (low == curr[2])
if (--yet_to_finish <= 0)
break;
if (++nlow == l)
nlow = first;
low_dir = direction(*low, *nlow);
} else {
upp = nupp;
if (upp == curr[0])
if (--yet_to_finish <= 0)
break;
if (++nupp == l)
nupp = first;
upp_dir = direction(*nupp, *upp);
}
low_goes_next = less_angle(low_dir, upp_dir);
Strip_2 test_strip = low_goes_next ?
strip(*low, low_dir, *upp) : strip(*low, upp_dir, *upp);
if (width_less(test_strip, strip_so_far))
strip_so_far = test_strip;
} // for (;;)
// return the result
return t.copy_strip_lines_2(strip_so_far, o);
} // min_strip_2(f, l, o, t)
} //namespace CGAL
#include <CGAL/Min_quadrilateral_traits_2.h>
namespace CGAL {
template < class ForwardIterator, class OutputIterator >
inline
OutputIterator
min_rectangle_2(ForwardIterator f,
ForwardIterator l,
OutputIterator o)
{
typedef typename std::iterator_traits< ForwardIterator >::value_type VT;
typedef typename Kernel_traits<VT>::Kernel Kernel;
Min_quadrilateral_default_traits_2<Kernel> t;
return min_rectangle_2(f, l, o, t);
} // min_rectangle_2(f, l, o)
#ifndef CGAL_NO_DEPRECATED_CODE
// backwards compatibility
template < class ForwardIterator, class OutputIterator >
inline
OutputIterator
minimum_enclosing_rectangle_2(ForwardIterator f,
ForwardIterator l,
OutputIterator o)
{ return min_rectangle_2(f, l, o); }
#endif // CGAL_NO_DEPRECATED_CODE
template < class ForwardIterator, class OutputIterator >
inline
OutputIterator
min_parallelogram_2(ForwardIterator f,
ForwardIterator l,
OutputIterator o)
{
typedef typename std::iterator_traits< ForwardIterator >::value_type VT;
typedef typename Kernel_traits<VT>::Kernel Kernel;
Min_quadrilateral_default_traits_2<Kernel> t;
return min_parallelogram_2(f, l, o, t);
} // min_parallelogram_2(f, l, o)
#ifndef CGAL_NO_DEPRECATED_CODE
// backwards compatibility
template < class ForwardIterator, class OutputIterator >
inline
OutputIterator
minimum_enclosing_parallelogram_2(ForwardIterator f,
ForwardIterator l,
OutputIterator o)
{ return min_parallelogram_2(f, l, o); }
#endif // CGAL_NO_DEPRECATED_CODE
template < class ForwardIterator, class OutputIterator >
inline
OutputIterator
min_strip_2(ForwardIterator f,
ForwardIterator l,
OutputIterator o)
{
typedef typename std::iterator_traits< ForwardIterator >::value_type VT;
typedef typename Kernel_traits<VT>::Kernel Kernel;
Min_quadrilateral_default_traits_2<Kernel> t;
return min_strip_2(f, l, o, t);
} // min_strip_2(f, l, o)
#ifndef CGAL_NO_DEPRECATED_CODE
// backwards compatibility
template < class ForwardIterator, class OutputIterator >
inline
OutputIterator
minimum_enclosing_strip_2(ForwardIterator f,
ForwardIterator l,
OutputIterator o)
{ return min_strip_2(f, l, o); }
#endif // CGAL_NO_DEPRECATED_CODE
} //namespace CGAL
#endif // ! (CGAL_MIN_QUADRILATERAL_2_H)
|