/usr/include/CGAL/pierce_rectangles_2.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 | // Copyright (c) 1998-2003 ETH Zurich (Switzerland).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Michael Hoffmann <hoffmann@inf.ethz.ch>
#ifndef CGAL_PIERCE_RECTANGLES_2_H
#define CGAL_PIERCE_RECTANGLES_2_H 1
#include <CGAL/Optimisation/assertions.h>
#include <CGAL/circulator.h>
#include <CGAL/algorithm.h>
#include <algorithm>
#include <iterator>
#include <vector>
#include <boost/bind.hpp>
#if defined(BOOST_MSVC)
# pragma warning(push)
# pragma warning(disable:4355) // complaint about using 'this' to
#endif // initialize a member
namespace CGAL {
//!!! STL-extensions
template < class T >
struct Wastebasket {
typedef std::output_iterator_tag iterator_category;
typedef Wastebasket< T > iterator;
iterator
operator=( const T&)
{ return *this; }
iterator
operator*()
{ return *this; }
iterator
operator++()
{ return *this; }
iterator
operator++( int)
{ return *this; }
};
template < class Traits_ >
struct Loc_domain {
// ---------------------------------------------
// types:
typedef Traits_ Traits;
typedef typename Traits::FT FT;
typedef typename Traits::Point_2 Point_2;
typedef std::vector< Point_2 > Container;
typedef typename Container::iterator Iterator;
typedef typename Container::const_iterator Citerator;
typedef typename Container::reverse_iterator Riterator;
typedef typename Container::const_reference Creference;
typedef typename Container::size_type size_type;
// ---------------------------------------------
// creation:
void
update(int j, Citerator i)
{
CGAL_optimisation_precondition(j >= 0 && j < 4);
if (j < 2)
if (j == 0) {
if (traits.less_x_2_object()(*i, minx)) minx = *i;
if (traits.less_y_2_object()(*i, miny)) miny = *i;
}
else {
if (traits.less_y_2_object()(*i, miny)) miny = *i;
if (traits.less_x_2_object()(maxx, *i)) maxx = *i;
}
else
if (j == 2) {
if (traits.less_x_2_object()(maxx, *i)) maxx = *i;
if (traits.less_y_2_object()(maxy, *i)) maxy = *i;
}
else {
if (traits.less_y_2_object()(maxy, *i)) maxy = *i;
if (traits.less_x_2_object()(*i, minx)) minx = *i;
}
}
template < class InputIC >
Loc_domain(InputIC b, InputIC e, Traits t)
: pts(b, e),
end_(pts.end()),
minx(pts.front()),
miny(pts.front()),
maxx(pts.front()),
maxy(pts.front()),
traits(t)
{
CGAL_optimisation_precondition(b != e);
Iterator i = pts.begin();
CGAL_optimisation_assertion(i != pts.end());
while (++i != pts.end()) {
if (traits.less_x_2_object()(*i, minx)) minx = *i;
if (traits.less_x_2_object()(maxx, *i)) maxx = *i;
if (traits.less_y_2_object()(*i, miny)) miny = *i;
if (traits.less_y_2_object()(maxy, *i)) maxy = *i;
}
}
// ---------------------------------------------
// access operations:
Point_2
operator[](int i) const
// return corner points (0 <-> bottom-left, 1 <-> bottom-right)
{
CGAL_optimisation_precondition(i >= 0 && i < 4);
if (i == 0)
return traits.construct_point_2_above_right_implicit_point_2_object()(
minx, miny, r);
else if (i == 1)
return traits.construct_point_2_above_left_implicit_point_2_object()(
maxx, miny, r);
else if (i == 2)
return traits.construct_point_2_below_left_implicit_point_2_object()(
maxx, maxy, r);
return traits.construct_point_2_below_right_implicit_point_2_object()(
minx, maxy, r);
}
Point_2
extreme(int i) const
// return extreme points (0 <-> left, 1 <-> bottom)
{
CGAL_optimisation_precondition(i >= 0 && i < 4);
if (i > 1) return i == 2 ? maxx : maxy;
return i == 0 ? minx : miny;
}
Point_2&
extreme(int i)
// return extreme points (0 <-> left, 1 <-> bottom)
{
CGAL_optimisation_precondition(i >= 0 && i < 4);
if (i > 1) return i == 2 ? maxx : maxy;
return i == 0 ? minx : miny;
}
Citerator begin() const { return pts.begin(); }
Iterator begin() { return pts.begin(); }
#ifndef _MSC_VER
Citerator end() const { return end_; }
#else
// Yet another really great MSVC feature ...
// without that static_cast to itself it does not compile :-)
Citerator end() const { return static_cast<Iterator>(end_); }
#endif
Iterator& end() { return end_; }
Iterator real_end() { return pts.end(); }
bool empty() const { return begin() == end(); }
size_type size() const { return end() - begin(); }
Creference front() const { return pts.front(); }
// ---------------------------------------------
// check operation:
void
check() const {
CGAL_optimisation_expensive_assertion_code(
Iterator i = pts.begin();
do {
CGAL_optimisation_assertion(!traits.less_x_2_object()(*i, minx));
CGAL_optimisation_assertion(!traits.less_x_2_object()(maxx, *i));
CGAL_optimisation_assertion(!traits.less_y_2_object()(*i, miny));
CGAL_optimisation_assertion(!traits.less_y_2_object()(maxy, *i));
} while (++i != end);
)
}
protected:
// points container
Container pts;
// const iterator to past-the-end
Iterator end_;
public:
// actual center radius
FT r;
// (copies of) elements with minimal/maximal x/y coordinate
Point_2 minx, miny, maxx, maxy;
// Traits class
Traits traits;
}; // class Loc_domain
template < class Traits_ >
struct Staircases : public Loc_domain< Traits_ > {
typedef Traits_ Traits;
typedef Loc_domain< Traits > Base;
typedef typename Base::Container Container;
typedef typename Base::Iterator Iterator;
typedef typename Base::Citerator Citerator;
typedef typename Base::Riterator Riterator;
typedef typename Traits::Point_2 Point_2;
typedef typename Traits::FT FT;
typedef std::pair< Point_2, Point_2 > Intervall;
template < class InputIC >
Staircases(InputIC b, InputIC e, Traits t)
: Base(b, e, t),
sorted(this->pts),
xgy(t.signed_x_distance_2_object()(this->maxx, this->minx) >
t.signed_y_distance_2_object()(this->maxy, this->miny))
{
using std::sort;
using std::find_if;
Container& xsort = xgy ? sorted : this->pts;
Container& ysort = xgy ? this->pts : sorted;
// build top-left and bottom-right staircases
sort(ysort.begin(), ysort.end(), this->traits.less_y_2_object());
// bottom-right
Iterator i = ysort.begin();
do {
brstc.push_back(*i++);
i = find_if(i, ysort.end(),
boost::bind(this->traits.less_x_2_object(), brstc.back(), _1));
} while (i != ysort.end());
// top-left
Riterator j = ysort.rbegin();
do {
tlstc.push_back(*j++);
j = find_if(j, ysort.rend(),
boost::bind(this->traits.less_x_2_object(), _1, tlstc.back()));
} while (j != ysort.rend());
// build left-bottom and right-top staircases
sort(xsort.begin(), xsort.end(), this->traits.less_x_2_object());
// left-bottom
i = xsort.begin();
do {
lbstc.push_back(*i++);
i = find_if(i, xsort.end(),
boost::bind(this->traits.less_y_2_object(), _1, lbstc.back()));
} while (i != xsort.end());
// right-top
j = xsort.rbegin();
do {
rtstc.push_back(*j++);
j = find_if(j, xsort.rend(),
boost::bind(this->traits.less_y_2_object(), rtstc.back(), _1));
} while (j != xsort.rend());
} // Staircases(b, e, t)
bool is_middle_empty() const {
//!!! the "middle" point could be precomputed in advance
Citerator i = this->pts.begin();
FT rr = FT(2) * this->r;
do
if (this->traits.signed_x_distance_2_object()(this->maxx, *i) > rr &&
this->traits.signed_x_distance_2_object()(*i, this->minx) > rr &&
this->traits.signed_y_distance_2_object()(*i, this->miny) > rr &&
this->traits.signed_y_distance_2_object()(this->maxy, *i) > rr)
return false;
while (++i != this->pts.end());
return true;
} // is_middle()
bool is_x_greater_y() const { return xgy; }
Citerator tlstc_begin() const { return tlstc.begin(); }
Citerator tlstc_end() const { return tlstc.end(); }
Citerator lbstc_begin() const { return lbstc.begin(); }
Citerator lbstc_end() const { return lbstc.end(); }
Citerator brstc_begin() const { return brstc.begin(); }
Citerator brstc_end() const { return brstc.end(); }
Citerator rtstc_begin() const { return rtstc.begin(); }
Citerator rtstc_end() const { return rtstc.end(); }
Intervall top_intervall() const {
Point_2 p =
this->traits.construct_point_2_above_right_implicit_point_2_object()(
this->minx, this->miny, FT(2) * this->r);
Point_2 q =
this->traits.construct_point_2_above_left_implicit_point_2_object()(
this->maxx, this->miny, FT(2) * this->r);
Citerator i =
min_element_if(
this->pts.begin(), this->pts.end(),
this->traits.less_x_2_object(),
boost::bind(std::logical_and< bool >(),
boost::bind(this->traits.less_x_2_object(), p, _1),
boost::bind(this->traits.less_y_2_object(), p, _1)));
Citerator j =
max_element_if(
this->pts.begin(), this->pts.end(),
this->traits.less_x_2_object(),
boost::bind(std::logical_and< bool >(),
boost::bind(this->traits.less_x_2_object(), _1, q),
boost::bind(this->traits.less_y_2_object(), q, _1)));
return Intervall(i == this->pts.end() ? this->maxx : *i,
j == this->pts.end() ? this->minx : *j);
} // top_intervall()
Intervall bottom_intervall() const {
Point_2 p =
this->traits.construct_point_2_below_right_implicit_point_2_object()(
this->minx, this->maxy, FT(2) * this->r);
Point_2 q =
this->traits.construct_point_2_below_left_implicit_point_2_object()(
this->maxx, this->maxy, FT(2) * this->r);
Citerator i =
min_element_if(
this->pts.begin(), this->pts.end(),
this->traits.less_x_2_object(),
boost::bind(std::logical_and< bool >(),
boost::bind(this->traits.less_x_2_object(), p, _1),
boost::bind(this->traits.less_y_2_object(), _1, p)));
Citerator j =
max_element_if(
this->pts.begin(), this->pts.end(),
this->traits.less_x_2_object(),
boost::bind(std::logical_and< bool >(),
boost::bind(this->traits.less_x_2_object(), _1, q),
boost::bind(this->traits.less_y_2_object(), _1, q)));
return Intervall(i == this->pts.end() ? this->maxx : *i,
j == this->pts.end() ? this->minx : *j);
} // bottom_intervall()
Intervall left_intervall() const {
Point_2 p =
this->traits.construct_point_2_above_left_implicit_point_2_object()(
this->maxx, this->miny, FT(2) * this->r);
Point_2 q =
this->traits.construct_point_2_below_left_implicit_point_2_object()(
this->maxx, this->maxy, FT(2) * this->r);
Citerator i =
min_element_if(
this->pts.begin(), this->pts.end(),
this->traits.less_y_2_object(),
boost::bind(std::logical_and< bool >(),
boost::bind(this->traits.less_x_2_object(), _1, p),
boost::bind(this->traits.less_y_2_object(), p, _1)));
Citerator j =
max_element_if(
this->pts.begin(), this->pts.end(),
this->traits.less_y_2_object(),
boost::bind(std::logical_and< bool >(),
boost::bind(this->traits.less_x_2_object(), _1, q),
boost::bind(this->traits.less_y_2_object(), _1, q)));
return Intervall(i == this->pts.end() ? this->maxy : *i,
j == this->pts.end() ? this->miny : *j);
} // left_intervall()
Intervall right_intervall() const {
Point_2 p =
this->traits.construct_point_2_above_right_implicit_point_2_object()(
this->minx, this->miny, FT(2) * this->r);
Point_2 q =
this->traits.construct_point_2_below_right_implicit_point_2_object()(
this->minx, this->maxy, FT(2) * this->r);
Citerator i =
min_element_if(
this->pts.begin(), this->pts.end(),
this->traits.less_y_2_object(),
boost::bind(std::logical_and< bool >(),
boost::bind(this->traits.less_x_2_object(), p, _1),
boost::bind(this->traits.less_y_2_object(), p, _1)));
Citerator j =
max_element_if(
this->pts.begin(), this->pts.end(),
this->traits.less_y_2_object(),
boost::bind(std::logical_and< bool >(),
boost::bind(this->traits.less_x_2_object(), q, _1),
boost::bind(this->traits.less_y_2_object(), _1, q)));
return Intervall(i == this->pts.end() ? this->maxy : *i,
j == this->pts.end() ? this->miny : *j);
} // right_intervall()
template < class OutputIterator >
OutputIterator shared_intervall(OutputIterator o) const {
if (xgy) {
if (this->traits.signed_y_distance_2_object()(
this->maxy, this->miny) > FT(4) * this->r)
return o;
Point_2 p =
this->traits.construct_point_2_below_right_implicit_point_2_object()(
this->minx, this->maxy, FT(2) * this->r);
Point_2 q =
this->traits.construct_point_2_above_left_implicit_point_2_object()(
this->maxx, this->miny, FT(2) * this->r);
//!!! start with binary search
for (Citerator i = sorted.begin(); i != sorted.end(); ++i)
if (this->traits.less_x_2_object()(p, *i) &&
this->traits.less_x_2_object()(*i, q) &&
!this->traits.less_y_2_object()(*i, p) &&
!this->traits.less_y_2_object()(q, *i))
*o++ = *i;
} else {
if (this->traits.signed_x_distance_2_object()(
this->maxx, this->minx) > FT(4) * this->r)
return o;
Point_2 p =
this->traits.construct_point_2_above_left_implicit_point_2_object()(
this->maxx, this->miny, FT(2) * this->r);
Point_2 q =
this->traits.construct_point_2_below_right_implicit_point_2_object()(
this->minx, this->maxy, FT(2) * this->r);
//!!! start with binary search
for (Citerator i = sorted.begin(); i != sorted.end(); ++i)
if (!this->traits.less_x_2_object()(*i, p) &&
!this->traits.less_x_2_object()(q, *i) &&
this->traits.less_y_2_object()(p, *i) &&
this->traits.less_y_2_object()(*i, q))
*o++ = *i;
}
return o;
} // shared_intervall(o)
private:
Container tlstc, lbstc, brstc, rtstc, sorted;
// exceeds the x-dimension of the location domain its y-dimension?
bool xgy;
};
template < class InputIC, class OutputIterator, class Traits >
inline OutputIterator
two_cover_points(
InputIC f, InputIC l, OutputIterator o, bool& ok, const Traits& t)
{
CGAL_optimisation_precondition(f != l);
// compute location domain:
Loc_domain< Traits > d(f, l, t);
return two_cover_points(d, o, ok, t);
} // two_cover_points(f, l, o, ok, t)
template < class InputIC, class OutputIterator, class Traits >
inline OutputIterator
three_cover_points(
InputIC f, InputIC l, OutputIterator o, bool& ok, const Traits& t)
{
CGAL_optimisation_precondition(f != l);
// compute location domain:
Loc_domain< Traits > d(f, l, t);
return three_cover_points(d, o, ok, t);
} // three_cover_points(f, l, o, ok, t)
template < class InputIC, class OutputIterator, class Traits >
inline OutputIterator
four_cover_points(
InputIC f, InputIC l, OutputIterator o, bool& ok, const Traits& t)
{
CGAL_optimisation_precondition(f != l);
// compute location domain:
Loc_domain< Traits > d(f, l, t);
return four_cover_points(d, o, ok, t);
} // four_cover_points(f, l, o, ok, t)
template < class OutputIterator, class Traits >
OutputIterator
two_cover_points(
const Loc_domain< Traits >& d,
OutputIterator o,
bool& ok)
{
using std::find_if;
using std::less;
typedef typename Traits::FT FT;
typename Traits::Infinity_distance_2 dist =
d.traits.infinity_distance_2_object();
typename Traits::Signed_infinity_distance_2 sdist =
d.traits.signed_infinity_distance_2_object();
if (sdist(d[2], d[0]) <= FT(0)) {
// the location domain is degenerate and [f,l) is one-pierceable
*o++ = d[0];
ok = true;
return o;
}
// check whether {d[0], d[2]} forms a piercing set
if (d.end() ==
find_if(d.begin(),
d.end(),
boost::bind(less<FT>(),
d.r,
boost::bind(Min<FT>(),
boost::bind(dist, d[0], _1),
boost::bind(dist, d[2], _1)))))
{
*o++ = d[0];
*o++ = d[2];
ok = true;
return o;
}
// check whether {d[1], d[3]} forms a piercing set
if (d.end() ==
find_if(d.begin(),
d.end(),
boost::bind(less<FT>(),
d.r,
boost::bind(Min<FT>(),
boost::bind(dist, d[1], _1),
boost::bind(dist, d[3], _1)))))
{
*o++ = d[1];
*o++ = d[3];
ok = true;
return o;
}
// no piercing set exists:
ok = false;
return o;
} // two_cover_points(d, o, ok, t)
template < class OutputIterator, class Traits >
OutputIterator
three_cover_points(
Loc_domain< Traits >& d,
OutputIterator o,
bool& ok)
{
using std::find_if;
using std::less;
using std::iter_swap;
CGAL_optimisation_precondition(!d.empty());
// typedefs:
typedef typename Traits::FT FT;
typedef typename Traits::Point_2 Point_2;
typedef typename Loc_domain< Traits >::Iterator Iterator;
typename Traits::Infinity_distance_2 dist =
d.traits.infinity_distance_2_object();
// test the four corners:
for (int k = 0; k < 4; ++k) {
// extract all points which are close enough to d[k]
Point_2 corner = d[k];
// find first point not covered by the rectangle at d[k]
Iterator i = find_if(d.begin(), d.end(),
boost::bind(less<FT>(), d.r, boost::bind(dist, corner, _1)));
// are all points already covered?
if (i == d.end()) {
CGAL_optimisation_assertion(k == 0);
*o++ = d[0];
ok = true;
return o;
} // if (i == d.end())
// save changing sides of d:
Point_2 save_side1 = d.extreme(k);
Point_2 save_side2 = d.extreme((k+1) % 4);
Iterator save_end = d.end();
// now run through it:
// initialize the two (possibly) changing sides of d
d.extreme(k) = d.extreme((k+1) % 4) = *i;
// is there any point covered?
if (i == d.begin()) {
while (++i != d.end() && dist(corner, *i) > d.r)
d.update(k, i);
d.end() = i;
} else {
// move *i to the begin of pts
iter_swap(i, d.begin());
d.end() = d.begin() + 1;
}
// [d.begin(), d.end()) shall be the range of uncovered points
if (i != save_end)
while (++i != save_end)
if (dist(corner, *i) > d.r) {
d.update(k, i);
iter_swap(i, d.end());
++d.end();
} // if (dist(corner, *i) > d.r)
// check disjoint for two-pierceability:
CGAL_optimisation_expensive_assertion(
save_end == find_if(d.end(), save_end,
boost::bind(less<FT>(), d.r, boost::bind(dist, corner, _1))));
CGAL_optimisation_expensive_assertion(
d.end() == find_if(d.begin(), d.end(),
boost::bind(std::greater_equal<FT>(),
d.r,
boost::bind(dist, corner, _1))));
two_cover_points(d, o, ok);
// restore saved sides of d:
d.extreme(k) = save_side1;
d.extreme((k+1) % 4) = save_side2;
if (ok) {
// does any rectangle contain the corner?
if (d.end() != save_end) {
*o++ = corner;
d.end() = save_end;
}
return o;
} // if (ok)
d.end() = save_end;
} // for (int k = 0; k < 4; ++k)
// no piercing set exists:
ok = false;
return o;
} // three_cover_points(d, o, ok)
} //namespace CGAL
namespace CGAL {
template < class OutputIterator, class Traits >
OutputIterator
four_cover_points(Staircases< Traits >& d, OutputIterator o, bool& ok)
{
using std::less;
using std::iter_swap;
using std::find_if;
using std::back_inserter;
typedef typename Traits::Point_2 Point_2;
typedef typename Traits::FT FT;
typedef typename Traits::Less_x_2 Less_x_2;
typedef typename Traits::Less_y_2 Less_y_2;
typedef typename Traits::Signed_x_distance_2 Signed_x_distance_2;
typedef typename Traits::Signed_y_distance_2 Signed_y_distance_2;
typedef typename Traits::Infinity_distance_2 Infinity_distance_2;
typedef typename Staircases< Traits >::Container Container;
typedef typename Staircases< Traits >::Iterator Iterator;
typedef typename Staircases< Traits >::Citerator Citerator;
typedef typename Staircases< Traits >::Intervall Intervall;
Infinity_distance_2 dist = d.traits.infinity_distance_2_object();
Less_x_2 lessx = d.traits.less_x_2_object();
Less_y_2 lessy = d.traits.less_y_2_object();
Signed_x_distance_2 sdistx = d.traits.signed_x_distance_2_object();
Signed_y_distance_2 sdisty = d.traits.signed_y_distance_2_object();
typename Traits::Construct_point_2_above_right_implicit_point_2
cparip =
d.traits.construct_point_2_above_right_implicit_point_2_object();
typename Traits::Construct_point_2_above_left_implicit_point_2
cpalip =
d.traits.construct_point_2_above_left_implicit_point_2_object();
typename Traits::Construct_point_2_below_right_implicit_point_2
cpbrip =
d.traits.construct_point_2_below_right_implicit_point_2_object();
// test the four corners:
for (int j = 0; j < 5; ++j) {
const int k = j < 4 ? j : 3;
// extract all points which are close enough to this point
Point_2 corner = d[k];
if (j >= 3) {
if (j == 3) {
Citerator i = d.tlstc_begin();
while (sdistx(*i, d.minx) > FT(2) * d.r)
++i;
corner = cpbrip(d.minx, *i, d.r);
} else {
Citerator i = d.tlstc_end();
while (sdisty(d.maxy, *--i) > FT(2) * d.r) {}
corner = cpbrip(*i, d.maxy, d.r);
}
}
// find first point not covered by the rectangle at d[k]
Iterator i = find_if(d.begin(), d.end(),
boost::bind(less<FT>(), d.r, boost::bind(dist, corner, _1)));
// are all points already covered?
if (i == d.end()) {
CGAL_optimisation_assertion(k == 0);
*o++ = d[0];
ok = true;
return o;
} // if (i == d.end())
// save changing sides of d:
Point_2 save_side1 = d.extreme(k);
Point_2 save_side2 = d.extreme((k+1) % 4);
Iterator save_end = d.end();
// now run through it:
// initialize the two (possibly) changing sides of d
d.extreme(k) = d.extreme((k+1) % 4) = *i;
// is there any point covered?
if (i == d.begin()) {
while (++i != d.end() && dist(corner, *i) > d.r)
d.update(k, i);
d.end() = i;
} else {
// move *i to the begin of pts
iter_swap(i, d.begin());
d.end() = d.begin() + 1;
}
// [d.begin(), d.end()) shall be the range of uncovered points
if (i != save_end)
while (++i != save_end)
if (dist(corner, *i) > d.r) {
d.update(k, i);
iter_swap(i, d.end());
++d.end();
} // if (dist(corner, *i) > d.r)
// check disjoint for two-pierceability:
CGAL_optimisation_expensive_assertion(
save_end == find_if(d.end(), save_end,
boost::bind(less<FT>(), d.r, boost::bind(dist, corner, _1))));
CGAL_optimisation_expensive_assertion(
d.end() == find_if(d.begin(), d.end(),
boost::bind(std::greater_equal<FT>(),
d.r,
boost::bind(dist, corner, _1))));
three_cover_points(d, o, ok);
// restore saved sides of d:
d.extreme(k) = save_side1;
d.extreme((k+1) % 4) = save_side2;
if (ok) {
// does any rectangle contain the corner?
if (d.end() != save_end) {
*o++ = corner;
d.end() = save_end;
}
return o;
} // if (ok)
d.end() = save_end;
} // for (int k = 0; k < 4; ++k)
// test if four covering rectangles can be placed
// on the boundary of d, one on each side
// if there is any point that cannot be covered in this way, stop here
if (d.is_middle_empty()) {
// now try to position the bottom piercing point in each
// of the intervalls formed by S_bt and S_br
// (no need to consider S_bl, since we move from left
// to right and leaving a rectangle won't make piercing easier)
Intervall top_i = d.top_intervall();
Intervall left_i = d.left_intervall();
Intervall bottom_i = d.bottom_intervall();
Intervall right_i = d.right_intervall();
Container share;
d.shared_intervall(back_inserter(share));
Citerator shf = share.end();
Citerator shl = share.end();
Citerator tl = d.tlstc_begin();
Citerator lb = d.lbstc_begin();
Citerator br = d.brstc_begin();
Citerator rt = d.rtstc_begin();
// make sure the top intervall is covered (left endpoint)
// (it might be that top_i.first determines the placement of
// the top square)
Point_2 top = top_i.first;
if (lessx(top, *tl))
while (++tl != d.tlstc_end() && !lessx(*tl, top)) {}
else
top = *tl++;
if (tl != d.tlstc_end()) {
for (;;) {
// make sure the top intervall is covered (right endpoint)
if (sdistx(top_i.second, top) > FT(2) * d.r)
break;
// compute position of left square
Point_2 left = lessy(left_i.second, *tl) ? *tl : left_i.second;
// make sure the left intervall is covered
if (sdisty(left, left_i.first) <= FT(2) * d.r) {
// compute position of bottom square
while (lb != d.lbstc_end() && sdisty(left, *lb) <= FT(2) * d.r)
++lb;
// has the left square reached the bottom-left corner?
if (lb == d.lbstc_end())
break;
Point_2 bottom = lessx(bottom_i.first, *lb) ? bottom_i.first : *lb;
// check the shared x-intervall
if (!share.empty() && d.is_x_greater_y()) {
// compute position of top in share
#ifndef _MSC_VER
while (shf != share.begin() && !lessx(*(shf - 1), top))
#else
while (shf != Citerator(share.begin()) &&
!lessx(*(shf - 1), top))
#endif
--shf;
#ifndef _MSC_VER
while (shl != share.begin() &&
#else
while (shl != Citerator(share.begin()) &&
#endif
sdistx(*(shl - 1), top) > FT(2) * d.r)
--shl;
// make sure shared intervall is covered (left endpoint)
#ifndef _MSC_VER
if ((shf != share.begin() || shl == share.end()) &&
lessx(share.front(), bottom))
bottom = share.front();
else if (shl != share.end() && lessx(*shl, bottom))
bottom = *shl;
#else
if ((shf != Citerator(share.begin()) ||
shl == Citerator(share.end())) &&
lessx(share.front(), bottom))
bottom = share.front();
else if (shl != Citerator(share.end()) && lessx(*shl, bottom))
bottom = *shl;
#endif
}
// make sure the bottom and the shared intervall (right endpoint)
// are covered
#ifndef _MSC_VER
if (sdistx(bottom_i.second, bottom) <= FT(2) * d.r &&
(!d.is_x_greater_y() ||
((shl == share.end() ||
sdistx(share.back(), bottom) <= FT(2) * d.r) &&
(shf == share.begin() ||
sdistx(*(shf - 1), bottom) <= FT(2) * d.r))))
#else
if (sdistx(bottom_i.second, bottom) <= FT(2) * d.r &&
((!d.is_x_greater_y() ||
(shl == Citerator(share.end()) ||
sdistx(share.back(), bottom) <= FT(2) * d.r) &&
(shf == Citerator(share.begin()) ||
sdistx(*(shf - 1), bottom) <= FT(2) * d.r))))
#endif
{
// compute position of right square
while (br != d.brstc_end() && sdistx(*br, bottom) <= FT(2) * d.r)
++br;
// has the bottom square reached the bottom-right corner?
if (br == d.brstc_end())
break;
Point_2 right = lessy(right_i.first, *br) ? right_i.first : *br;
// check the shared y-intervall
if (!share.empty() && !d.is_x_greater_y()) {
// compute position of left in share
#ifndef _MSC_VER
while (shf != share.begin() &&
sdisty(left, *(shf - 1)) <= FT(2) * d.r)
#else
while (shf != Citerator(share.begin()) &&
sdisty(left, *(shf - 1)) <= FT(2) * d.r)
#endif
--shf;
#ifndef _MSC_VER
while (shl != share.begin() &&
#else
while (shl != Citerator(share.begin()) &&
#endif
lessy(left, *(shl - 1)))
--shl;
// make sure shared intervall is covered (bottom endpoint)
#ifndef _MSC_VER
if ((shf != share.begin() || shl == share.end()) &&
lessy(share.front(), right))
right = share.front();
else if (shl != share.end() && lessy(*shl, right))
right = *shl;
#else
if ((shf != Citerator(share.begin()) ||
shl == Citerator(share.end())) &&
lessy(share.front(), right))
right = share.front();
else if (shl != Citerator(share.end()) && lessy(*shl, right))
right = *shl;
#endif
}
// make sure the right intervall and the shared intervall
// (top endpoint) are covered
#ifndef _MSC_VER
if (sdisty(right_i.second, right) <= FT(2) * d.r &&
(d.is_x_greater_y() ||
((shl == share.end() ||
sdisty(share.back(), right) <= FT(2) * d.r) &&
(shf == share.begin() ||
sdisty(*(shf - 1), right) <= FT(2) * d.r))))
#else
if (sdisty(right_i.second, right) <= FT(2) * d.r &&
(d.is_x_greater_y() ||
((shl == Citerator(share.end()) ||
sdisty(share.back(), right) <= FT(2) * d.r) &&
(shf == Citerator(share.begin()) ||
sdisty(*(shf - 1), right) <= FT(2) * d.r))))
#endif
{
// compute right bound for top square
while (rt != d.rtstc_end() &&
sdisty(*rt, right) <= FT(2) * d.r)
++rt;
// has the right square reached the top-right corner?
if (rt == d.rtstc_end())
break;
// Finally: Do we have a covering?
if (sdistx(*rt, top) <= FT(2) * d.r) {
*o++ = cpbrip(d.minx, left, d.r);
*o++ = cparip(bottom, d.miny, d.r);
*o++ = cpalip(d.maxx, right, d.r);
*o++ = cpbrip(top, d.maxy, d.r);
ok = true;
return o;
} // if (covering)
} // if (sdisty(right_i.second, right) <= FT(2) * d.r)
} // if (bottom and shared intervall are covered)
} // if (sdisty(left, left_i.first) <= FT(2) * d.r)
top = *tl;
if (!lessy(left_i.second, *tl) || ++tl == d.tlstc_end() ||
lessx(bottom_i.first, *lb) || lessy(right_i.first, *br))
break;
} // for (;;)
} // if (tl != d.tlstc_end())
} // if (!d.is_middle_empty())
ok = false;
return o;
} // four_cover_points(d, o, ok)
struct Two_covering_algorithm {
template < class Traits, class OutputIterator >
OutputIterator
operator()(Staircases< Traits >& d,
OutputIterator o,
bool& ok) const
{ return two_cover_points(d, o, ok); }
}; // class Two_covering_algorithm
struct Three_covering_algorithm {
template < class Traits, class OutputIterator >
OutputIterator
operator()(Staircases< Traits >& d,
OutputIterator o,
bool& ok) const
{ return three_cover_points(d, o, ok); }
}; // class Three_covering_algorithm
struct Four_covering_algorithm {
template < class Traits, class OutputIterator >
OutputIterator
operator()(Staircases< Traits >& d,
OutputIterator o,
bool& ok) const
{ return four_cover_points(d, o, ok); }
}; // class Four_covering_algorithm
} //namespace CGAL
#if defined(BOOST_MSVC)
# pragma warning(pop)
#endif
#endif // ! (CGAL_PIERCE_RECTANGLES_2_H)
|