/usr/include/CLHEP/GenericFunctions/SphericalHarmonicCoefficientSet.icc is in libclhep-dev 2.1.2.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | #include <vector>
#include "CLHEP/GenericFunctions/ClebschGordanCoefficientSet.hh"
#include <stdexcept>
namespace Genfun {
class SphericalHarmonicCoefficientSet::Clockwork {
public:
std::vector<std::vector<std::complex<double> > > data;
};
inline
SphericalHarmonicCoefficientSet::SphericalHarmonicCoefficientSet(unsigned int LMAX):c(new Clockwork()){
for (unsigned int l=0;l<=LMAX;l++) {
std::vector<std::complex<double> > theMs;
for (int m=-l; m<=int(l);m++) {
theMs.push_back(std::complex<double> (0.0));
}
c->data.push_back(theMs);
}
}
inline
SphericalHarmonicCoefficientSet::~SphericalHarmonicCoefficientSet(){
delete c;
}
inline
SphericalHarmonicCoefficientSet::SphericalHarmonicCoefficientSet(const SphericalHarmonicCoefficientSet & right):
c(new Clockwork(*right.c))
{
}
inline
unsigned int SphericalHarmonicCoefficientSet::getLMax() const {
return c->data.size()-1;
}
inline
const std::complex<double> &SphericalHarmonicCoefficientSet:: operator () (unsigned int l, int m) const {
return c->data[l][m+l];
}
inline
std::complex<double> & SphericalHarmonicCoefficientSet::operator () (unsigned int l, int m) {
return c->data[l][m+l];
}
inline
std::ostream & operator << ( std::ostream & o, const SphericalHarmonicCoefficientSet & c)
{
for (unsigned int l=0;l<=c.getLMax();l++) {
for (int m=-l;m<=int(l);m++) {
o << "l=" << l << " m=" ;
if (m==0) o << " ";
if (m>0 ) o << "+";
o << m << " mag: " << c(l,m) << std::endl;
}
o << std::endl;
}
return o;
}
inline
SphericalHarmonicCoefficientSet & SphericalHarmonicCoefficientSet::operator= (const SphericalHarmonicCoefficientSet & source ){
if (this!=&source) {
delete c;
c = new Clockwork(*source.c);
}
return *this;
}
inline
SphericalHarmonicCoefficientSet & SphericalHarmonicCoefficientSet::operator*= (const std::complex<double> & s ){
unsigned int LMAX=getLMax();
for (unsigned int l=0;l<=LMAX;l++) {
for (int m=-l;m<=int(l);m++) {
operator()(l,m)*=s;
}
}
return *this;
}
inline
SphericalHarmonicCoefficientSet & SphericalHarmonicCoefficientSet::operator+= (const SphericalHarmonicCoefficientSet & source ){
unsigned int LMAX=getLMax();
for (unsigned int l=0;l<=LMAX;l++) {
for (int m=-l;m<=int(l);m++) {
operator()(l,m)+=source(l,m);
}
}
return *this;
}
inline
SphericalHarmonicCoefficientSet & SphericalHarmonicCoefficientSet::operator-= (const SphericalHarmonicCoefficientSet & source ){
unsigned int LMAX=getLMax();
for (unsigned int l=0;l<=LMAX;l++) {
for (int m=-l;m<=int(l);m++) {
operator()(l,m)-=source(l,m);
}
}
return *this;
}
inline
std::complex<double> dot(const SphericalHarmonicCoefficientSet &a,
const SphericalHarmonicCoefficientSet &b) {
std::complex<double> result=0.0;
if (a.getLMax()!=b.getLMax()) throw std::runtime_error ("function dot: SphericalHarmonicCoefficientSets of different dimension");
for (unsigned int l=0;l<=a.getLMax();l++) {
for (int m=-l;m<=int(l);m++) {
result += a(l,m)*conj(b(l,m));
}
}
return result;
}
inline SphericalHarmonicCoefficientSet squareExpansionCoefficients(const SphericalHarmonicCoefficientSet & coefficientsA) {
unsigned int LMAX=coefficientsA.getLMax();
SphericalHarmonicCoefficientSet coefficientsASq(2*LMAX);
static ClebschGordanCoefficientSet clebschGordan;
for (unsigned int L=0;L<=2*LMAX;L++) {
for (int M=-L; M<=int(L); M++) {
coefficientsASq(L,M)=0.0;
for (unsigned int l1=0;l1<=LMAX;l1++) {
for (unsigned int l2=0;l2<=LMAX;l2++) {
for (int m1=-l1;m1<=int(l1);m1++) {
for (int m2=-l2;m2<=int(l2);m2++) {
if (m1-m2==M) {
if (((l1+l2) >= L) && abs(l1-l2) <= int(L)) {
coefficientsASq(L,M) += (coefficientsA(l1,m1)*
conj(coefficientsA(l2,m2))*
(m2%2 ? -1.0:1.0) *
sqrt((2*l1+1)*(2*l2+1)/(4*M_PI*(2*L+1)))*
clebschGordan(l1,l2,0,0,L,0)*clebschGordan(l1,l2,m1,-m2,L,M));
}
}
}
}
}
}
}
}
return coefficientsASq;
}
}
|