This file is indexed.

/usr/include/CLHEP/GenericFunctions/SphericalHarmonicFit.icc is in libclhep-dev 2.1.2.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
// -*- C++ -*-
// $Id: 
#include <sstream>
#include <cmath>
#include <gsl/gsl_sf_legendre.h>
#include <complex>
#include <cstdlib>
#include <stdexcept>
#include "CLHEP/GenericFunctions/ClebschGordanCoefficientSet.hh"
namespace Genfun {

FUNCTION_OBJECT_IMP(SphericalHarmonicFit)

class SphericalHarmonicFit::Clockwork {
  
public:
  
  Clockwork(unsigned int LMAX):LMAX(LMAX),coefficientsA(LMAX),coefficientsASq(2*LMAX) {}

  struct MStruct {
    unsigned int M;
    Genfun::Parameter *fractionAbsMOrHigher;
    Genfun::Parameter *fractionMPositive;
    Genfun::Parameter *phaseMPlus;
    Genfun::Parameter *phaseMMinus;
  };
  
  struct LStruct {
    unsigned  int      L;
    Genfun::Parameter *fractionLOrHigher;
    Genfun::Parameter *phaseLM0;
    std::vector<MStruct> mstruct;
  };

  std::vector<LStruct>   lstruct;
  const unsigned   int   LMAX;


  SphericalHarmonicCoefficientSet coefficientsA;
  SphericalHarmonicCoefficientSet coefficientsASq;
  ClebschGordanCoefficientSet     ClebschGordan;

  void recomputeCoefficients() {

    // Note, the calling sequence of the GSL Special Function forces us to 
    // transpose Plm from its "natural" order.. It is addressed as P[m][l].
    
    //  double ampSq=0.0;
    
    std::complex<double> I(0,1.0);
    double f=1.0;
    double fThisSum=0.0;
    for (unsigned int l=0;l<=LMAX;l++) {
      
      // lStructThis is zero if l==0;
      // lStructNext is zero if l==LMAX;
      const LStruct *lStructThis= (l==0    ? NULL: & lstruct[l-1]);
      const LStruct *lStructNext= (l==LMAX ? NULL: & lstruct[l]);
      double fHigher = lStructNext ? lStructNext->fractionLOrHigher->getValue() : NULL;
      double fThis   = f*(1-fHigher);
      fThisSum+=fThis;
      
      double g=1.0;
      double gThisSum=0.0;
      for (int m=0;m<=int(l);m++) {
	
	// mStructThis is zero if m==0;
	// mStructNext is zero if m==l;
	const MStruct *mStructThis= ((m==0 || !lStructThis) ? NULL: & lStructThis->mstruct[m-1]);
	const MStruct *mStructNext= (m==int(l) ? NULL: & lStructThis->mstruct[m]);
	double gHigher = mStructNext ? mStructNext->fractionAbsMOrHigher->getValue() : NULL;
	double gThis   = g*(1-gHigher);
	gThisSum+=gThis;
	
	if (fThis<0) {
	  std::cout << "L-fraction correction" << fThis << "-->0" << std::endl;
	  fThis=0.0;
	}
	if (gThis<0) {
	  std::cout << "M-fraction correction" << gThis << "-->0" << std::endl;
	  gThis=0.0;
	}
	double px=0.0; // phase
	if (m==0) {
	  if (lStructThis) {
	    double amplitude = sqrt(fThis*gThis);
	    px = lStructThis->phaseLM0->getValue();;
	    coefficientsA(l,m)=exp(I*px)*amplitude;
	  }
	  // L=0 occurs here:
	  else {
	    double amplitude = sqrt(fThis*gThis);
	    coefficientsA(l,m)=exp(I*px)*amplitude;
	  }
	}
	// Split it between positive and negative:
	else {
	  {
	    double amplitude = sqrt(fThis*gThis*mStructThis->fractionMPositive->getValue());
	    px = mStructThis->phaseMPlus->getValue();;
	    coefficientsA(l,m)=exp(I*px)*amplitude;
	  }
	  {
	    double amplitude = sqrt(fThis*gThis*(1-mStructThis->fractionMPositive->getValue()));
	    px = mStructThis->phaseMMinus->getValue();;
	    coefficientsA(l,-m)=exp(I*px)*amplitude;
	  }
	}
	g*=gHigher;
      }
      f*=fHigher;
    }
  }
};


inline
SphericalHarmonicFit::SphericalHarmonicFit(unsigned int LMAX):
  c(new Clockwork(LMAX))
{
  for (unsigned int l=1;l<=LMAX;l++) {
    Clockwork::LStruct lstruct;
    lstruct.L=l;
    {
      std::ostringstream stream; 
      stream << "Fraction L>=" << l;
      lstruct.fractionLOrHigher= new Genfun::Parameter(stream.str(), 0.5, 0, 1);
    }
    {
      std::ostringstream stream; 
      stream << "Phase L=" << l << "; M=0";
      lstruct.phaseLM0= new Genfun::Parameter(stream.str(), M_PI, -2*M_PI, 2*M_PI);
    }
    for (unsigned int m=1;m<=l;m++) {
      Clockwork::MStruct mstruct;
      mstruct.M=m;
      {
	std::ostringstream stream; 
	stream << "Fraction L= " << l << "; |M| >=" << m;
	mstruct.fractionAbsMOrHigher= new Genfun::Parameter(stream.str(), 0.5, 0, 1);
      }
      {
	std::ostringstream stream; 
	stream << "Fraction L=" << l << "; M=+" << m ;
	mstruct.fractionMPositive= new Genfun::Parameter(stream.str(), 0.5, 0, 1);
      }
      {
	std::ostringstream stream; 
	stream << "Phase L=" << l << "; M=+" << m ;
	mstruct.phaseMPlus= new Genfun::Parameter(stream.str(), M_PI, -2*M_PI, 2*M_PI);
      }
      {
	std::ostringstream stream; 
	stream << "Phase L=" << l << "; M=-" << m ;
	mstruct.phaseMMinus= new Genfun::Parameter(stream.str(), M_PI, -2*M_PI, 2*M_PI);
      }
      
      lstruct.mstruct.push_back(mstruct);
    }
    c->lstruct.push_back(lstruct);
  }
}


inline
SphericalHarmonicFit::~SphericalHarmonicFit() {
  for (unsigned int i=0;i<c->lstruct.size();i++) {
    delete c->lstruct[i].fractionLOrHigher;
    delete c->lstruct[i].phaseLM0;
    for (unsigned int j=0;j<c->lstruct[i].mstruct.size();j++) {
      delete c->lstruct[i].mstruct[j].fractionAbsMOrHigher;
      delete c->lstruct[i].mstruct[j].fractionMPositive;
      delete c->lstruct[i].mstruct[j].phaseMPlus;
      delete c->lstruct[i].mstruct[j].phaseMMinus;
    }
  }
  delete c;
}

  inline
  SphericalHarmonicFit::SphericalHarmonicFit(const SphericalHarmonicFit & right):
    AbsFunction(),
    c(new Clockwork(right.c->LMAX))
  {
    for (unsigned int i=0;i<right.c->lstruct.size();i++) {
      Clockwork::LStruct lstruct;
      lstruct.L= right.c->lstruct[i].L;
      lstruct.fractionLOrHigher = new Parameter(*right.c->lstruct[i].fractionLOrHigher);
      lstruct.phaseLM0          = new Parameter(*right.c->lstruct[i].phaseLM0);
      for (unsigned int j=0;j<right.c->lstruct[i].mstruct.size();j++) {
	Clockwork::MStruct mstruct;
	mstruct.M=right.c->lstruct[i].mstruct[j].M;
	mstruct.fractionAbsMOrHigher=new Parameter(*right.c->lstruct[i].mstruct[j].fractionAbsMOrHigher);
	mstruct.fractionMPositive   =new Parameter(*right.c->lstruct[i].mstruct[j].fractionMPositive);
	mstruct.phaseMPlus          =new Parameter(*right.c->lstruct[i].mstruct[j].phaseMPlus);
	mstruct.phaseMMinus         =new Parameter(*right.c->lstruct[i].mstruct[j].phaseMMinus);
	lstruct.mstruct.push_back(mstruct);
      }
      c->lstruct.push_back(lstruct);
    }
  }
  
  inline
  double SphericalHarmonicFit::operator() (double ) const {
    throw std::runtime_error("Dimensionality error in SphericalHarmonicFit");
    return 0;
  }
  
  inline
  double SphericalHarmonicFit::operator() (const Argument & a ) const {
    unsigned int LMAX=c->LMAX;
    double x = a[0];
    double phi=a[1];

    // Note, the calling sequence of the GSL Special Function forces us to 
    // transpose Plm from its "natural" order.. It is addressed as P[m][l].

    //double Plm[LMAX+1][LMAX+1];  
    std::vector< std::vector<double> > Plm(LMAX+1);
    for (int m=0;m<=int(LMAX);m++) {
      Plm[m].resize(LMAX+1);
      gsl_sf_legendre_sphPlm_array (LMAX, m, x, &*Plm[m].begin());
    }

    c->recomputeCoefficients();
    std::complex<double> P=0.0;
    std::complex<double> I(0,1.0);
    for (unsigned int l=0;l<=LMAX;l++) {
      for (int m=0;m<=int(l);m++) {
	{
	  int LP=l-abs(m);
	  double Pn= Plm[abs(m)][LP];
	  
	  if (!finite(Pn)) return 0.0;

	  // Once for positive m (in all cases):
	  P+=(c->coefficientsA(l,m)*Pn*exp(I*(m*phi)));
	  // Once for negative m (skip if m==0);
	  if (m!=0) P+= ( (m%2 ?-1.0:1.0)*c->coefficientsA(l,-m)*Pn*exp(-I*(m*phi)));
	}
      }
    }
    
    double retVal=std::norm(P);
    if (!finite(retVal)) {
      return 0.0;
    }
    return retVal;
  }
  
  inline
  unsigned int SphericalHarmonicFit::lMax() const {
    return c->LMAX;
  }
  
  inline
  unsigned int SphericalHarmonicFit::numComponents() const {
    return (c->LMAX+1)*(c->LMAX+1)-1;
  }
  
  // The fraction of Amplitude sq which is L or higher
  inline
  Parameter *SphericalHarmonicFit::getFractionLOrHigher(unsigned int L){
    return c->lstruct[L-1].fractionLOrHigher;
  }
  
  inline
  const Parameter *SphericalHarmonicFit::getFractionLOrHigher(unsigned int L) const {
    return c->lstruct[L-1].fractionLOrHigher;
  }

  // The phase of coefficient L, M=0;
  inline
  Parameter *SphericalHarmonicFit::getPhaseLM0(unsigned int L){
    return c->lstruct[L-1].phaseLM0;
  }
  
  inline
  const Parameter *SphericalHarmonicFit::getPhaseLM0(unsigned int L) const{
    return c->lstruct[L-1].phaseLM0;
  }
  
  // The fraction of amplitude sq which is L which is +- M OR HIGHER
  inline
  Parameter *SphericalHarmonicFit::getFractionAbsMOrHigher(unsigned int L, unsigned int M){
    return c->lstruct[L-1].mstruct[M-1].fractionAbsMOrHigher;
  }
  
  inline
  const Parameter *SphericalHarmonicFit::getFractionAbsMOrHigher(unsigned int L, unsigned int M) const{
    return c->lstruct[L-1].mstruct[M-1].fractionAbsMOrHigher;
  }
  

  // The fraction of amplitude sq which is +- M, which is positive
  inline
  Parameter *SphericalHarmonicFit::getFractionMPositive(unsigned int L, unsigned int M){
    return c->lstruct[L-1].mstruct[M-1].fractionMPositive;
  }

  inline
  const Parameter *SphericalHarmonicFit::getFractionMPositive(unsigned int L, unsigned int M) const{
    return c->lstruct[L-1].mstruct[M-1].fractionMPositive;
  }


  // The phase of the positive M coefficient
  inline
  Parameter *SphericalHarmonicFit::getPhaseMPlus(unsigned int L, unsigned int M){
    return c->lstruct[L-1].mstruct[M-1].phaseMPlus;
  }
  
  inline
  const Parameter *SphericalHarmonicFit::getPhaseMPlus(unsigned int L, unsigned int M) const{
    return c->lstruct[L-1].mstruct[M-1].phaseMPlus;
  }
  
  
  // The phase of the negative M coefficient
  inline
  Parameter *SphericalHarmonicFit::getPhaseMMinus(unsigned int L, unsigned int M){
    return c->lstruct[L-1].mstruct[M-1].phaseMMinus;
  }
  
  inline
  const Parameter *SphericalHarmonicFit::getPhaseMMinus(unsigned int L, unsigned int M) const{
    return c->lstruct[L-1].mstruct[M-1].phaseMMinus;
  }
  
  inline
  const SphericalHarmonicCoefficientSet & SphericalHarmonicFit::coefficientsA() const {
    c->recomputeCoefficients();
    return c->coefficientsA;
  }

  inline
  const SphericalHarmonicCoefficientSet & SphericalHarmonicFit::coefficientsASq() const{
    c->recomputeCoefficients();
    unsigned int LMAX=c->coefficientsA.getLMax();
    for (unsigned int L=0;L<=2*LMAX;L++) {
      for (int M=-L; M<=int(L); M++) {
	c->coefficientsASq(L,M)=0.0;
	for (unsigned int l1=0;l1<=LMAX;l1++) {
	  for (unsigned int l2=0;l2<=LMAX;l2++) {
	    for (int m1=-l1;m1<=int(l1);m1++) {
	      for (int m2=-l2;m2<=int(l2);m2++) {
		  if (m1-m2==M) {
		    if (((l1+l2) >= L) && abs(l1-l2) <=int(L))  {
		    c->coefficientsASq(L,M) += (c->coefficientsA(l1,m1)*
						conj(c->coefficientsA(l2,m2))*
						(m2%2 ? -1.0:1.0) * 
						sqrt((2*l1+1)*(2*l2+1)/(4*M_PI*(2*L+1)))*
						c->ClebschGordan(l1,l2,0,0,L,0)*c->ClebschGordan(l1,l2,m1,-m2,L,M));
		    }
		  }
	      }
	    }
	  }
	}
      }
    }
    return c->coefficientsASq;
  }

  inline
  void SphericalHarmonicFit::recomputeCoefficients() const {
    c->recomputeCoefficients();
  }

} // end namespace Genfun