/usr/include/CLHEP/Vector/BoostZ.icc is in libclhep-dev 2.1.2.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | // -*- C++ -*-
// ---------------------------------------------------------------------------
//
// This file is a part of the CLHEP - a Class Library for High Energy Physics.
//
// This is the definitions of the inline member functions of the
// HepBoostZ class
//
#include <cmath>
namespace CLHEP {
// ---------- Constructors and Assignment:
inline HepBoostZ::HepBoostZ() : beta_(0.0), gamma_(1.0) {}
inline HepBoostZ::HepBoostZ(const HepBoostZ & b) :
beta_ (b.beta_),
gamma_(b.gamma_) {}
inline HepBoostZ & HepBoostZ::operator = (const HepBoostZ & b) {
beta_ = b.beta_;
gamma_ = b.gamma_;
return *this;
}
inline HepBoostZ::HepBoostZ(double bbeta) { set(bbeta); }
// - Protected method:
inline HepBoostZ::HepBoostZ( double bbeta, double ggamma ) :
beta_(bbeta), gamma_(ggamma) {}
// ---------- Accessors:
inline double HepBoostZ::beta() const {
return beta_;
}
inline double HepBoostZ::gamma() const {
return gamma_;
}
inline Hep3Vector HepBoostZ::boostVector() const {
return Hep3Vector( 0, 0, beta_ );
}
inline Hep3Vector HepBoostZ::getDirection() const {
return Hep3Vector( 0.0, 0.0, 1.0 );
}
inline double HepBoostZ::xx() const { return 1.0;}
inline double HepBoostZ::xy() const { return 0.0;}
inline double HepBoostZ::xz() const { return 0.0;}
inline double HepBoostZ::xt() const { return 0.0;}
inline double HepBoostZ::yx() const { return 0.0;}
inline double HepBoostZ::yy() const { return 1.0;}
inline double HepBoostZ::yz() const { return 0.0;}
inline double HepBoostZ::yt() const { return 0.0;}
inline double HepBoostZ::zx() const { return 0.0;}
inline double HepBoostZ::zy() const { return 0.0;}
inline double HepBoostZ::zz() const { return gamma();}
inline double HepBoostZ::zt() const { return beta()*gamma();}
inline double HepBoostZ::tx() const { return 0.0;}
inline double HepBoostZ::ty() const { return 0.0;}
inline double HepBoostZ::tz() const { return beta()*gamma();}
inline double HepBoostZ::tt() const { return gamma();}
inline HepLorentzVector HepBoostZ::col1() const {
return HepLorentzVector ( 1, 0, 0, 0 );
}
inline HepLorentzVector HepBoostZ::col2() const {
return HepLorentzVector ( 0, 1, 0, 0 );
}
inline HepLorentzVector HepBoostZ::col3() const {
return HepLorentzVector ( 0, 0, gamma(), beta()*gamma() );
}
inline HepLorentzVector HepBoostZ::col4() const {
return HepLorentzVector ( 0, 0, beta()*gamma(), gamma() );
}
inline HepLorentzVector HepBoostZ::row1() const {
return HepLorentzVector ( col1() );
}
inline HepLorentzVector HepBoostZ::row2() const {
return HepLorentzVector ( col2() );
}
inline HepLorentzVector HepBoostZ::row3() const {
return HepLorentzVector ( col3() );
}
inline HepLorentzVector HepBoostZ::row4() const {
return HepLorentzVector ( col4() );
}
// ---------- Comparisons:
inline int HepBoostZ::compare( const HepBoostZ & b ) const {
if (beta() < b.beta()) {
return -1;
} else if (beta() > b.beta()) {
return 1;
} else {
return 0;
}
}
inline bool HepBoostZ::operator == ( const HepBoostZ & b ) const {
return beta_ == b.beta_;
}
inline bool HepBoostZ::operator != ( const HepBoostZ & b ) const {
return beta_ != b.beta_;
}
inline bool HepBoostZ::operator <= ( const HepBoostZ & b ) const {
return beta_ <= b.beta_;
}
inline bool HepBoostZ::operator >= ( const HepBoostZ & b ) const {
return beta_ >= b.beta_;
}
inline bool HepBoostZ::operator < ( const HepBoostZ & b ) const {
return beta_ < b.beta_;
}
inline bool HepBoostZ::operator > ( const HepBoostZ & b ) const {
return beta_ > b.beta_;
}
inline bool HepBoostZ::isIdentity() const {
return ( beta() == 0 );
}
inline double HepBoostZ::distance2( const HepBoostZ & b ) const {
double d = beta()*gamma() - b.beta()*b.gamma();
return d*d;
}
inline double HepBoostZ::howNear(const HepBoostZ & b) const {
return std::sqrt(distance2(b)); }
inline double HepBoostZ::howNear(const HepBoost & b) const {
return std::sqrt(distance2(b)); }
inline double HepBoostZ::howNear(const HepRotation & r) const {
return std::sqrt(distance2(r)); }
inline double HepBoostZ::howNear(const HepLorentzRotation & lt) const {
return std::sqrt(distance2(lt)); }
inline bool HepBoostZ::isNear(const HepBoostZ & b,
double epsilon) const {
return (distance2(b) <= epsilon*epsilon);
}
inline bool HepBoostZ::isNear(const HepBoost & b,
double epsilon) const {
return (distance2(b) <= epsilon*epsilon);
}
// ---------- Properties:
double HepBoostZ::norm2() const {
register double bg = beta_*gamma_;
return bg*bg;
}
// ---------- Application:
inline HepLorentzVector
HepBoostZ::operator * (const HepLorentzVector & p) const {
double bg = beta_*gamma_;
return HepLorentzVector( p.x(),
p.y(),
gamma_*p.z() + bg*p.t(),
gamma_*p.t() + bg*p.z());
}
HepLorentzVector HepBoostZ::operator() (const HepLorentzVector & w) const {
return operator*(w);
}
// ---------- Operations in the group of 4-Rotations
inline HepBoostZ HepBoostZ::inverse() const {
return HepBoostZ( -beta(), gamma() );
}
inline HepBoostZ & HepBoostZ::invert() {
beta_ = -beta_;
return *this;
}
inline HepBoostZ inverseOf ( const HepBoostZ & b ) {
return HepBoostZ( -b.beta(), b.gamma());
}
// ---------- Tolerance:
inline double HepBoostZ::getTolerance() {
return Hep4RotationInterface::tolerance;
}
inline double HepBoostZ::setTolerance(double tol) {
return Hep4RotationInterface::setTolerance(tol);
}
} // namespace CLHEP
|