/usr/include/cln/object.h is in libcln-dev 1.3.3-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 | // General object definitions: pointers, reference counting, garbage collection.
#ifndef _CL_OBJECT_H
#define _CL_OBJECT_H
#include "cln/types.h"
#include "cln/modules.h"
#include <cstdlib>
namespace cln {
// We don't have to deal with circular structures, so normal reference counting
// is sufficient. Is also has the advantage of being mostly non-interrupting.
// An object is either a pointer to heap allocated data
// or immediate data.
// It is possible to distinguish these because pointers are aligned.
// cl_uint_alignment is the guaranteed alignment of a `void*' or `long'
// in memory. Must be > 1.
#if defined(__m68k__)
#define cl_word_alignment 2
#endif
#if defined(__i386__) || defined(__mips__) || defined(__mipsel__) || (defined(__sparc__) && !defined(__arch64__)) || defined(__hppa__) || defined(__arm__) || defined(__rs6000__) || defined(__m88k__) || defined(__convex__) || (defined(__s390__) && !defined(__s390x__)) || defined(__sh__) || (defined(__x86_64__) && defined(__ILP32__))
#define cl_word_alignment 4
#endif
#if defined(__alpha__) || defined(__ia64__) || defined(__mips64__) || defined(__powerpc64__) || (defined(__sparc__) && defined(__arch64__)) || (defined(__x86_64__) && !defined(__ILP32__)) || defined(__s390x__) || defined(__aarch64__)
#define cl_word_alignment 8
#endif
#if !defined(cl_word_alignment)
#error "Define cl_word_alignment for your CPU!"
#endif
// Four basic classes are introduced:
//
// gcobject rcobject
//
// gcpointer rcpointer
//
// `gcobject' = garbage collectible object (pointer or immediate),
// `gcpointer' = garbage collectible pointer,
// `rcobject' = reference counted object (pointer or immediate),
// `rcpointer' = reference counted pointer.
//
// "garbage collectible" means that a reference count is maintained, and
// when the reference count drops to 0, the object is freed. This is useful
// for all kind of short- or long-lived objects.
// "reference counted" means that a reference count is maintained, which
// cannot drop to 0. This is useful for objects which are registered in a
// global cache table, in order to know which objects can be thrown away
// when the cache is cleaned. (If the cache were never cleaned, its objects
// would never be freed, and we could get away with normal C pointers.)
//
// It is permissible to treat a `rcobject' as a `gcobject', and a `rcpointer'
// as a `gcpointer', but this just increases the destructor and copy-constructor
// overhead.
// It is also permissible to treat a `gcpointer' as a `gcobject', and a
// `rcpointer' as a `rcobject', but this just increases the destructor and
// copy-constructor overhead.
// Immediate data is a word, as wide as a pointer.
typedef sintP cl_sint;
typedef uintP cl_uint; // This ought to be called `cl_word'.
#define cl_pointer_size intPsize
// NB: (cl_pointer_size==64) implies defined(HAVE_FAST_LONGLONG)
#if (cl_pointer_size==64)
#define CL_WIDE_POINTERS
#endif
// Distinguish immediate data from pointers.
inline bool cl_pointer_p (cl_uint word)
{
return (word & (cl_word_alignment-1)) == 0;
}
inline bool cl_immediate_p (cl_uint word)
{
return (word & (cl_word_alignment-1)) != 0;
}
// Immediate data: Fixnum, Short Float, maybe Single Float.
// They have type tags.
// |...............................|......|
// cl_value cl_tag
// Number of bits reserved for tagging information:
#if (cl_word_alignment <= 4)
#define cl_tag_len 2
#else
#define cl_tag_len 3
#endif
#define cl_tag_shift 0
#define cl_value_shift (cl_tag_len+cl_tag_shift)
#define cl_value_len (cl_pointer_size - cl_value_shift)
#define cl_tag_mask (((1UL << cl_tag_len) - 1) << cl_tag_shift)
#define cl_value_mask (((1UL << cl_value_len) - 1) << cl_value_shift)
// Return the tag of a word.
inline cl_uint cl_tag (cl_uint word)
{
return (word & cl_tag_mask) >> cl_tag_shift;
}
// Return the value (unsigned) of a word.
inline cl_uint cl_value (cl_uint word)
{
// This assumes cl_value_shift + cl_value_len == cl_pointer_size.
return word >> cl_value_shift;
}
// Return a word, combining a value and a tag.
inline cl_uint cl_combine (cl_uint tag, cl_uint value)
{
return (value << cl_value_shift) + (tag << cl_tag_shift);
}
inline cl_uint cl_combine (cl_uint tag, cl_sint value)
{
// This assumes cl_value_shift + cl_value_len == cl_pointer_size.
return (value << cl_value_shift) + (tag << cl_tag_shift);
}
// Keep the compiler happy.
inline cl_uint cl_combine (cl_uint tag, unsigned int value)
{ return cl_combine(tag, (cl_uint)value); }
inline cl_uint cl_combine (cl_uint tag, int value)
{ return cl_combine(tag, (cl_sint)value); }
#ifdef HAVE_LONGLONG
inline cl_uint cl_combine (cl_uint tag, unsigned long long value)
{ return cl_combine(tag, (cl_uint)value); }
inline cl_uint cl_combine (cl_uint tag, long long value)
{ return cl_combine(tag, (cl_uint)value); }
#endif
// Definition of the tags.
#if !defined(CL_WIDE_POINTERS)
#if (cl_word_alignment == 2)
#define cl_FN_tag 1
#define cl_SF_tag 3 // must satisfy the cl_immediate_p predicate!
#endif
#if (cl_word_alignment == 4)
#define cl_FN_tag 1
#define cl_SF_tag 2
#endif
#else // CL_WIDE_POINTERS
// Single Floats are immediate as well.
#define cl_FN_tag 1
#define cl_SF_tag 2
#define cl_FF_tag 3
#endif
// Corresponding classes.
extern const struct cl_class * cl_immediate_classes [1<<cl_tag_len];
// Heap allocated data contains a header, for two purposes:
// - dynamic typing,
// - reference count (a portable alternative to garbage collection,
// or the basis for a portable and interoperable garbage collection).
struct cl_heap {
int refcount; // reference count
const struct cl_class * type; // type tag
};
// Function to destroy the contents of a heap object.
typedef void (*cl_heap_destructor_function) (cl_heap* pointer);
// Flags, may be ORed together.
#define cl_class_flags_subclass_complex 1 // all instances belong to cl_N
#define cl_class_flags_subclass_real 2 // all instances belong to cl_R
#define cl_class_flags_subclass_float 4 // all instances belong to cl_F
#define cl_class_flags_subclass_rational 8 // all instances belong to cl_RA
#define cl_class_flags_number_ring 16 // all instances are rings whose
// elements belong to cl_number
#define cl_class_flags_modint_ring 32 // all instances are rings whose
// elements belong to cl_MI
#define cl_class_flags_univpoly_ring 64 // all instances are rings whose
// elements belong to cl_UP
// Function to print an object for debugging, to cerr.
typedef void (*cl_heap_dprint_function) (cl_heap* pointer);
struct cl_class {
cl_heap_destructor_function destruct;
int flags;
cl_heap_dprint_function dprint;
};
// Free an object on heap.
extern void cl_free_heap_object (cl_heap* pointer);
// Debugging support for dynamic typing: Register a debugging print function.
#define cl_register_type_printer(type,printer) \
{ extern cl_class type; type.dprint = (printer); }
// cl_private_thing: An immediate value or a pointer into the heap.
// This must be as wide as a `cl_uint'.
// (Actually, this ought to be a union { void*; cl_uint; }, but using
// a pointer type generates better code.)
// Never throw away a cl_private_thing, or reference counts will be wrong!
typedef struct cl_anything * cl_private_thing;
// Increment the reference count.
inline void cl_inc_pointer_refcount (cl_heap* pointer)
{
pointer->refcount++;
}
// Decrement the reference count of a garbage collected pointer.
inline void cl_gc_dec_pointer_refcount (cl_heap* pointer)
{
if (--pointer->refcount == 0)
cl_free_heap_object(pointer);
}
// Decrement the reference count of a reference counted pointer.
inline void cl_rc_dec_pointer_refcount (cl_heap* pointer)
{
--pointer->refcount;
}
// Increment the reference count.
// This must be a macro, not an inline function, because pointer_p() and
// inc_pointer_refcount() are non-virtual member functions, so that the
// compiler can optimize it.
#define cl_inc_refcount(x) \
if ((x).pointer_p()) \
(x).inc_pointer_refcount(); \
// Decrement the reference count.
// This must be a macro, not an inline function, because pointer_p() and
// dec_pointer_refcount() are non-virtual member functions, so that the
// compiler can optimize it.
#define cl_dec_refcount(x) \
if ((x).pointer_p()) \
(x).dec_pointer_refcount(); \
// The declaration of a copy constructor.
// Restriction: The base class's default constructor must do nothing or
// initialize `pointer' to a constant expression.
#define CL_DEFINE_COPY_CONSTRUCTOR1(_class_) \
_CL_DEFINE_COPY_CONSTRUCTOR1(_class_,_class_)
#define _CL_DEFINE_COPY_CONSTRUCTOR1(_class_,_classname_) \
inline _class_::_classname_ (const _class_& x) \
{ \
cl_uint x_word = x.word; \
cl_inc_refcount(x); \
this->word = x_word; \
}
// The declaration of a copy constructor.
// Restriction: The base class must have the usual `cl_private_thing'
// constructor. Drawback: The base class must be known here.
#define CL_DEFINE_COPY_CONSTRUCTOR2(_class_,_baseclass_) \
_CL_DEFINE_COPY_CONSTRUCTOR2(_class_,_class_,_baseclass_)
#define _CL_DEFINE_COPY_CONSTRUCTOR2(_class_,_classname_,_baseclass_) \
inline _class_::_classname_ (const _class_& x) \
: _baseclass_ (as_cl_private_thing(x)) {}
// The declaration of an assignment operator.
#define CL_DEFINE_ASSIGNMENT_OPERATOR(dest_class,src_class) \
inline dest_class& dest_class::operator= (const src_class& x) \
{ \
/* Be careful, we might be assigning x to itself. */ \
cl_uint x_word = x.word; \
cl_inc_refcount(x); \
cl_dec_refcount(*this); \
this->word = x_word; \
return *this; \
}
// We have a small problem with destructors: The specialized destructor
// of a leaf class such as `cl_SF' should be more efficient than the
// general destructor for `cl_N'. Since (by C++ specs) destructing a cl_SF
// would run the destructors for cl_SF, cl_F, cl_R, cl_N (in that order),
// and in the last step the compiler does not know any more that the object
// actually is a cl_SF, there is no way to optimize the destructor!
// ("progn-reversed" method combination is evil.)
// And if we define "mirror"/"shadow" classes with no destructors (such
// that `cl_F' inherits from `cl_F_no_destructor' buts adds a destructor)
// then we need to add explicit conversion operators cl_SF -> cl_F -> cl_R ...,
// with the effect that calling an overloaded function like `as_cl_F'
// (which has two signatures `as_cl_F(cl_number)' and `as_cl_F(cl_F)')
// with a cl_SF argument gives an "call of overloaded function is ambiguous"
// error.
// There is no help: If we want overloaded functions to be callable in a way
// that makes sense, `cl_SF' has to be a subclass of `cl_F', and then the
// destructor of `cl_SF' will do at least as much computation as the `cl_F'
// destructor. Praise C++ ! :-((
// (Even making `pointer_p()' a virtual function would not help.)
// This is obnoxious.
template <class key1_type, class value_type> struct cl_htentry1;
// The four concrete classes of all objects.
class cl_gcobject {
public: /* ugh */
union {
void* pointer;
cl_heap* heappointer;
cl_uint word;
};
public:
// Default constructor. (Used for objects with no initializer.)
cl_gcobject ();
// Destructor. (Used when a variable goes out of scope.)
~cl_gcobject ();
// Copy constructor.
cl_gcobject (const cl_gcobject&);
// Assignment operator.
cl_gcobject& operator= (const cl_gcobject&);
// Distinguish immediate data from pointer.
bool pointer_p() const
{ return cl_pointer_p(word); }
// Reference counting.
void inc_pointer_refcount () const
{ cl_inc_pointer_refcount(heappointer); }
void dec_pointer_refcount () const
{ cl_gc_dec_pointer_refcount(heappointer); }
// Return the type tag of an immediate number.
cl_uint nonpointer_tag () const
{ return cl_tag(word); }
// Return the type tag of a heap-allocated number.
const cl_class * pointer_type () const
{ return heappointer->type; }
// Private pointer manipulations.
cl_private_thing _as_cl_private_thing () const;
// Private constructor.
cl_gcobject (cl_private_thing p)
#if !(defined(__alpha__) && !defined(__GNUC__))
: pointer (p) {}
#else
{ pointer = p; }
#endif
// Debugging output.
void debug_print () const;
// Ability to place an object at a given address.
void* operator new (size_t size, void* ptr) { (void)size; return ptr; }
void* operator new (size_t size) { return ::operator new (size); }
};
inline cl_gcobject::cl_gcobject () {}
inline cl_gcobject::~cl_gcobject () { cl_dec_refcount(*this); }
CL_DEFINE_COPY_CONSTRUCTOR1(cl_gcobject)
CL_DEFINE_ASSIGNMENT_OPERATOR(cl_gcobject,cl_gcobject)
class cl_gcpointer {
public: /* ugh */
union {
void* pointer;
cl_heap* heappointer;
cl_uint word;
};
public:
// Default constructor. (Used for objects with no initializer.)
cl_gcpointer ();
// Destructor. (Used when a variable goes out of scope.)
~cl_gcpointer ();
// Copy constructor.
cl_gcpointer (const cl_gcpointer&);
// Assignment operator.
cl_gcpointer& operator= (const cl_gcpointer&);
// Distinguish immediate data from pointer.
bool pointer_p() const
{ return true; }
// Reference counting.
void inc_pointer_refcount () const
{ cl_inc_pointer_refcount(heappointer); }
void dec_pointer_refcount () const
{ cl_gc_dec_pointer_refcount(heappointer); }
// Return the type tag of an immediate number.
cl_uint nonpointer_tag () const
{ return cl_tag(word); }
// Return the type tag of a heap-allocated number.
const cl_class * pointer_type () const
{ return heappointer->type; }
// Private pointer manipulations.
cl_private_thing _as_cl_private_thing () const;
// Private constructor.
cl_gcpointer (cl_private_thing p)
#if !(defined(__alpha__) && !defined(__GNUC__))
: pointer (p) {}
#else
{ pointer = p; }
#endif
// Debugging output.
void debug_print () const;
// Ability to place an object at a given address.
void* operator new (size_t size, void* ptr) { (void)size; return ptr; }
void* operator new (size_t size) { return ::operator new (size); }
};
inline cl_gcpointer::cl_gcpointer () {}
inline cl_gcpointer::~cl_gcpointer () { cl_dec_refcount(*this); }
CL_DEFINE_COPY_CONSTRUCTOR1(cl_gcpointer)
CL_DEFINE_ASSIGNMENT_OPERATOR(cl_gcpointer,cl_gcpointer)
class cl_rcobject {
public: /* ugh */
union {
void* pointer;
cl_heap* heappointer;
cl_uint word;
};
public:
// Default constructor. (Used for objects with no initializer.)
cl_rcobject ();
// Destructor. (Used when a variable goes out of scope.)
~cl_rcobject ();
// Copy constructor.
cl_rcobject (const cl_rcobject&);
// Assignment operator.
cl_rcobject& operator= (const cl_rcobject&);
// Distinguish immediate data from pointer.
bool pointer_p() const
{ return cl_pointer_p(word); }
// Reference counting.
void inc_pointer_refcount () const
{ cl_inc_pointer_refcount(heappointer); }
void dec_pointer_refcount () const
{ cl_rc_dec_pointer_refcount(heappointer); }
// Return the type tag of an immediate number.
cl_uint nonpointer_tag () const
{ return cl_tag(word); }
// Return the type tag of a heap-allocated number.
const cl_class * pointer_type () const
{ return heappointer->type; }
// Private pointer manipulations.
cl_private_thing _as_cl_private_thing () const;
// Private constructor.
cl_rcobject (cl_private_thing p)
#if !(defined(__alpha__) && !defined(__GNUC__))
: pointer (p) {}
#else
{ pointer = p; }
#endif
// Debugging output.
void debug_print () const;
// Ability to place an object at a given address.
void* operator new (size_t size, void* ptr) { (void)size; return ptr; }
void* operator new (size_t size) { return ::operator new (size); }
};
inline cl_rcobject::cl_rcobject () {}
inline cl_rcobject::~cl_rcobject () { cl_dec_refcount(*this); }
CL_DEFINE_COPY_CONSTRUCTOR1(cl_rcobject)
CL_DEFINE_ASSIGNMENT_OPERATOR(cl_rcobject,cl_rcobject)
class cl_rcpointer {
public: /* ugh */
union {
void* pointer;
cl_heap* heappointer;
cl_uint word;
};
public:
// Default constructor. (Used for objects with no initializer.)
cl_rcpointer ();
// Destructor. (Used when a variable goes out of scope.)
~cl_rcpointer ();
// Copy constructor.
cl_rcpointer (const cl_rcpointer&);
// Assignment operator.
cl_rcpointer& operator= (const cl_rcpointer&);
// Distinguish immediate data from pointer.
bool pointer_p() const
{ return true; }
// Reference counting.
void inc_pointer_refcount () const
{ cl_inc_pointer_refcount(heappointer); }
void dec_pointer_refcount () const
{ cl_rc_dec_pointer_refcount(heappointer); }
// Return the type tag of an immediate number.
cl_uint nonpointer_tag () const
{ return cl_tag(word); }
// Return the type tag of a heap-allocated number.
const cl_class * pointer_type () const
{ return heappointer->type; }
// Private pointer manipulations.
cl_private_thing _as_cl_private_thing () const;
// Private constructor.
cl_rcpointer (cl_private_thing p)
#if !(defined(__alpha__) && !defined(__GNUC__))
: pointer (p) {}
#else
{ pointer = p; }
#endif
// Debugging output.
void debug_print () const;
// Ability to place an object at a given address.
void* operator new (size_t size, void* ptr) { (void)size; return ptr; }
void* operator new (size_t size) { return ::operator new (size); }
};
inline cl_rcpointer::cl_rcpointer () {}
inline cl_rcpointer::~cl_rcpointer () { cl_dec_refcount(*this); }
CL_DEFINE_COPY_CONSTRUCTOR1(cl_rcpointer)
CL_DEFINE_ASSIGNMENT_OPERATOR(cl_rcpointer,cl_rcpointer)
// Private pointer manipulations.
inline cl_private_thing cl_gcobject::_as_cl_private_thing () const
{
cl_private_thing p = (cl_private_thing) pointer;
cl_inc_refcount(*this);
return p;
}
inline cl_private_thing as_cl_private_thing (const cl_gcobject& x)
{
return x._as_cl_private_thing();
}
inline cl_private_thing cl_gcpointer::_as_cl_private_thing () const
{
cl_private_thing p = (cl_private_thing) pointer;
cl_inc_refcount(*this);
return p;
}
inline cl_private_thing as_cl_private_thing (const cl_gcpointer& x)
{
return x._as_cl_private_thing();
}
inline cl_private_thing cl_rcobject::_as_cl_private_thing () const
{
cl_private_thing p = (cl_private_thing) pointer;
cl_inc_refcount(*this);
return p;
}
inline cl_private_thing as_cl_private_thing (const cl_rcobject& x)
{
return x._as_cl_private_thing();
}
inline cl_private_thing cl_rcpointer::_as_cl_private_thing () const
{
cl_private_thing p = (cl_private_thing) pointer;
cl_inc_refcount(*this);
return p;
}
inline cl_private_thing as_cl_private_thing (const cl_rcpointer& x)
{
return x._as_cl_private_thing();
}
// Note: When we define a function that returns a class object by value,
// we normally return it as const value. The declarations
// T func (...); (A)
// and
// const T func (...); (B)
// behave identically and generate identical code, except that the code
// func(...) = foo;
// compiles fine with (A) but is an error (and yields a warning) with (B).
// We want this warning.
// Define a conversion operator from one object to another object of the
// same size.
#define CL_DEFINE_CONVERTER(target_class) \
operator const target_class & () const \
{ \
typedef int assert1 [2*(sizeof(target_class)==sizeof(*this))-1]; \
return * (const target_class *) (void*) this; \
}
} // namespace cln
#endif /* _CL_OBJECT_H */
|