This file is indexed.

/usr/include/cln/ring.h is in libcln-dev 1.3.3-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
// Ring operations.

#ifndef _CL_RING_H
#define _CL_RING_H

#include "cln/object.h"
#include "cln/malloc.h"
#include "cln/proplist.h"
#include "cln/number.h"
#include "cln/exception.h"
#include "cln/io.h"

namespace cln {

class cl_I;

// This file defines the general layout of rings, ring elements, and
// operations available on ring elements. Any subclass of `cl_ring'
// must implement these operations, with the same memory layout.
// (Because generic packages like the polynomial rings access the base
// ring's operation vectors through inline functions defined in this file.)

class cl_heap_ring;

// Rings are reference counted, but not freed immediately when they aren't
// used any more. Hence they inherit from `cl_rcpointer'.

// Vectors of function pointers are more efficient than virtual member
// functions. But it constrains us not to use multiple or virtual inheritance.
//
// Note! We are passing raw `cl_heap_ring*' pointers to the operations
// for efficiency (compared to passing `const cl_ring&', we save a memory
// access, and it is easier to cast to a `cl_heap_ring_specialized*').
// These raw pointers are meant to be used downward (in the dynamic extent
// of the call) only. If you need to save them in a data structure, cast
// to `cl_ring'; this will correctly increment the reference count.
// (This technique is safe because the inline wrapper functions make sure
// that we have a `cl_ring' somewhere containing the pointer, so there
// is no danger of dangling pointers.)
//
// Note! Because the `cl_heap_ring*' -> `cl_ring' conversion increments
// the reference count, you have to use the `cl_private_thing' -> `cl_ring'
// conversion if the reference count is already incremented.

class cl_ring : public cl_rcpointer {
public:
	// Constructor. Takes a cl_heap_ring*, increments its refcount.
	cl_ring (cl_heap_ring* r);
	// Private constructor. Doesn't increment the refcount.
	cl_ring (cl_private_thing);
	// Copy constructor.
	cl_ring (const cl_ring&);
	// Assignment operator.
	cl_ring& operator= (const cl_ring&);
	// Default constructor.
	cl_ring ();
	// Automatic dereferencing.
	cl_heap_ring* operator-> () const
	{ return (cl_heap_ring*)heappointer; }
};
CL_DEFINE_COPY_CONSTRUCTOR2(cl_ring,cl_rcpointer)
CL_DEFINE_ASSIGNMENT_OPERATOR(cl_ring,cl_ring)

// Normal constructor for `cl_ring'.
inline cl_ring::cl_ring (cl_heap_ring* r)
{ cl_inc_pointer_refcount((cl_heap*)r); pointer = r; }
// Private constructor for `cl_ring'.
inline cl_ring::cl_ring (cl_private_thing p)
{ pointer = p; }

inline bool operator== (const cl_ring& R1, const cl_ring& R2)
{ return (R1.pointer == R2.pointer); }
inline bool operator!= (const cl_ring& R1, const cl_ring& R2)
{ return (R1.pointer != R2.pointer); }
inline bool operator== (const cl_ring& R1, cl_heap_ring* R2)
{ return (R1.pointer == R2); }
inline bool operator!= (const cl_ring& R1, cl_heap_ring* R2)
{ return (R1.pointer != R2); }

// Representation of an element of a ring.
//
// In order to support true polymorphism (without C++ templates), all
// ring elements share the same basic layout:
//      cl_ring ring;     // the ring
//      cl_gcobject rep;  // representation of the element
// The representation of the element depends on the ring, of course,
// but we constrain it to be a single pointer into the heap or an immediate
// value.
//
// Any arithmetic operation on a ring R (like +, -, *) must return a value
// with ring = R. This is
// a. necessary if the computation is to proceed correctly (e.g. in cl_RA,
//    ((3/4)*4 mod 3) is 0, simplifying it to ((cl_I)4 mod (cl_I)3) = 1
//    wouldn't be correct),
// b. possible even if R is an extension ring of some ring R1 (e.g. cl_N
//    being an extension ring of cl_R). Automatic retraction from R to R1
//    can be done through dynamic typing: An element of R which happens
//    to lie in R1 is stored using the internal representation of R1,
//    but with ring = R. Elements of R1 and R\R1 can be distinguished
//    through rep's type.
// c. an advantage for the implementation of polynomials and other
//    entities which contain many elements of the same ring. They need
//    to store only the elements' representations, and a single pointer
//    to the ring.
//
// The ring operations exist in two versions:
// - Low-level version, which only operates on the representation.
// - High-level version, which operates on full cl_ring_elements.
// We make this distinction for performance: Multiplication of polynomials
// over Z/nZ, operating on the high-level operations, spends 40% of its
// computing time with packing and unpacking of cl_ring_elements.
// The low-level versions have an underscore prepended and are unsafe.

class _cl_ring_element {
public:
	cl_gcobject rep;	// representation of the element
	// Default constructor.
	_cl_ring_element ();
public: /* ugh */
	// Constructor.
	_cl_ring_element (const cl_heap_ring* R, const cl_gcobject& r) : rep (as_cl_private_thing(r)) { (void)R; }
	_cl_ring_element (const cl_ring& R, const cl_gcobject& r) : rep (as_cl_private_thing(r)) { (void)R; }
public:	// Ability to place an object at a given address.
	void* operator new (size_t size) { return malloc_hook(size); }
	void* operator new (size_t size, void* ptr) { (void)size; return ptr; }
	void operator delete (void* ptr) { free_hook(ptr); }
};

class cl_ring_element : public _cl_ring_element {
protected:
	cl_ring _ring;			// ring
public:
	const cl_ring& ring () const { return _ring; }
	// Default constructor.
	cl_ring_element ();
public: /* ugh */
	// Constructor.
	cl_ring_element (const cl_ring& R, const cl_gcobject& r) : _cl_ring_element (R,r), _ring (R) {}
	cl_ring_element (const cl_ring& R, const _cl_ring_element& r) : _cl_ring_element (r), _ring (R) {}
public:	// Debugging output.
	void debug_print () const;
	// Ability to place an object at a given address.
	void* operator new (size_t size) { return malloc_hook(size); }
	void* operator new (size_t size, void* ptr) { (void)size; return ptr; }
	void operator delete (void* ptr) { free_hook(ptr); }
};

// The ring operations are encoded as vectors of function pointers. You
// can add more operations to the end of each vector or add new vectors,
// but you must not reorder the operations nor reorder the vectors nor
// change the functions' signatures incompatibly.

// There should ideally be a template class for each vector, but unfortunately
// you lose the ability to initialize the vector using "= { ... }" syntax
// when you subclass it.

struct _cl_ring_setops {
	// print
	void (* fprint) (cl_heap_ring* R, std::ostream& stream, const _cl_ring_element& x);
	// equality
	bool (* equal) (cl_heap_ring* R, const _cl_ring_element& x, const _cl_ring_element& y);
	// ...
};
struct _cl_ring_addops {
	// 0
	const _cl_ring_element (* zero) (cl_heap_ring* R);
	bool (* zerop) (cl_heap_ring* R, const _cl_ring_element& x);
	// x+y
	const _cl_ring_element (* plus) (cl_heap_ring* R, const _cl_ring_element& x, const _cl_ring_element& y);
	// x-y
	const _cl_ring_element (* minus) (cl_heap_ring* R, const _cl_ring_element& x, const _cl_ring_element& y);
	// -x
	const _cl_ring_element (* uminus) (cl_heap_ring* R, const _cl_ring_element& x);
	// ...
};
struct _cl_ring_mulops {
	// 1
	const _cl_ring_element (* one) (cl_heap_ring* R);
	// canonical homomorphism
	const _cl_ring_element (* canonhom) (cl_heap_ring* R, const cl_I& x);
	// x*y
	const _cl_ring_element (* mul) (cl_heap_ring* R, const _cl_ring_element& x, const _cl_ring_element& y);
	// x^2
	const _cl_ring_element (* square) (cl_heap_ring* R, const _cl_ring_element& x);
	// x^y, y Integer >0
	const _cl_ring_element (* expt_pos) (cl_heap_ring* R, const _cl_ring_element& x, const cl_I& y);
	// ...
};
  typedef const _cl_ring_setops  cl_ring_setops;
  typedef const _cl_ring_addops  cl_ring_addops;
  typedef const _cl_ring_mulops  cl_ring_mulops;

// Representation of a ring in memory.

class cl_heap_ring : public cl_heap {
public:
	// Allocation.
	void* operator new (size_t size) { return malloc_hook(size); }
	// Deallocation.
	void operator delete (void* ptr) { free_hook(ptr); }
private:
	cl_property_list properties;
protected:
	cl_ring_setops* setops;
	cl_ring_addops* addops;
	cl_ring_mulops* mulops;
public:
	// More information comes here.
	// ...
public:
	// Low-level operations.
	void _fprint (std::ostream& stream, const _cl_ring_element& x)
		{ setops->fprint(this,stream,x); }
	bool _equal (const _cl_ring_element& x, const _cl_ring_element& y)
		{ return setops->equal(this,x,y); }
	const _cl_ring_element _zero ()
		{ return addops->zero(this); }
	bool _zerop (const _cl_ring_element& x)
		{ return addops->zerop(this,x); }
	const _cl_ring_element _plus (const _cl_ring_element& x, const _cl_ring_element& y)
		{ return addops->plus(this,x,y); }
	const _cl_ring_element _minus (const _cl_ring_element& x, const _cl_ring_element& y)
		{ return addops->minus(this,x,y); }
	const _cl_ring_element _uminus (const _cl_ring_element& x)
		{ return addops->uminus(this,x); }
	const _cl_ring_element _one ()
		{ return mulops->one(this); }
	const _cl_ring_element _canonhom (const cl_I& x)
		{ return mulops->canonhom(this,x); }
	const _cl_ring_element _mul (const _cl_ring_element& x, const _cl_ring_element& y)
		{ return mulops->mul(this,x,y); }
	const _cl_ring_element _square (const _cl_ring_element& x)
		{ return mulops->square(this,x); }
	const _cl_ring_element _expt_pos (const _cl_ring_element& x, const cl_I& y)
		{ return mulops->expt_pos(this,x,y); }
	// High-level operations.
	void fprint (std::ostream& stream, const cl_ring_element& x)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		_fprint(stream,x);
	}
	bool equal (const cl_ring_element& x, const cl_ring_element& y)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		if (!(y.ring() == this)) throw runtime_exception();
		return _equal(x,y);
	}
	const cl_ring_element zero ()
	{
		return cl_ring_element(this,_zero());
	}
	bool zerop (const cl_ring_element& x)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		return _zerop(x);
	}
	const cl_ring_element plus (const cl_ring_element& x, const cl_ring_element& y)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		if (!(y.ring() == this)) throw runtime_exception();
		return cl_ring_element(this,_plus(x,y));
	}
	const cl_ring_element minus (const cl_ring_element& x, const cl_ring_element& y)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		if (!(y.ring() == this)) throw runtime_exception();
		return cl_ring_element(this,_minus(x,y));
	}
	const cl_ring_element uminus (const cl_ring_element& x)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		return cl_ring_element(this,_uminus(x));
	}
	const cl_ring_element one ()
	{
		return cl_ring_element(this,_one());
	}
	const cl_ring_element canonhom (const cl_I& x)
	{
		return cl_ring_element(this,_canonhom(x));
	}
	const cl_ring_element mul (const cl_ring_element& x, const cl_ring_element& y)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		if (!(y.ring() == this)) throw runtime_exception();
		return cl_ring_element(this,_mul(x,y));
	}
	const cl_ring_element square (const cl_ring_element& x)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		return cl_ring_element(this,_square(x));
	}
	const cl_ring_element expt_pos (const cl_ring_element& x, const cl_I& y)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		return cl_ring_element(this,_expt_pos(x,y));
	}
	// Property operations.
	cl_property* get_property (const cl_symbol& key)
		{ return properties.get_property(key); }
	void add_property (cl_property* new_property)
		{ properties.add_property(new_property); }
// Constructor.
	cl_heap_ring (cl_ring_setops* setopv, cl_ring_addops* addopv, cl_ring_mulops* mulopv)
		: setops (setopv), addops (addopv), mulops (mulopv)
		{ refcount = 0; } // will be incremented by the `cl_ring' constructor
};
#define SUBCLASS_cl_heap_ring() \
public:									  \
	/* Allocation. */						  \
	void* operator new (size_t size) { return malloc_hook(size); } \
	/* Deallocation. */						  \
	void operator delete (void* ptr) { free_hook(ptr); }

// Operations on ring elements.

// Output.
inline void fprint (std::ostream& stream, const cl_ring_element& x)
	{ x.ring()->fprint(stream,x); }
CL_DEFINE_PRINT_OPERATOR(cl_ring_element)

// Add.
inline const cl_ring_element operator+ (const cl_ring_element& x, const cl_ring_element& y)
	{ return x.ring()->plus(x,y); }

// Negate.
inline const cl_ring_element operator- (const cl_ring_element& x)
	{ return x.ring()->uminus(x); }

// Subtract.
inline const cl_ring_element operator- (const cl_ring_element& x, const cl_ring_element& y)
	{ return x.ring()->minus(x,y); }

// Equality.
inline bool operator== (const cl_ring_element& x, const cl_ring_element& y)
	{ return x.ring()->equal(x,y); }
inline bool operator!= (const cl_ring_element& x, const cl_ring_element& y)
	{ return !x.ring()->equal(x,y); }

// Compare against 0.
inline bool zerop (const cl_ring_element& x)
	{ return x.ring()->zerop(x); }

// Multiply.
inline const cl_ring_element operator* (const cl_ring_element& x, const cl_ring_element& y)
	{ return x.ring()->mul(x,y); }

// Squaring.
inline const cl_ring_element square (const cl_ring_element& x)
	{ return x.ring()->square(x); }

// Exponentiation x^y, where y > 0.
inline const cl_ring_element expt_pos (const cl_ring_element& x, const cl_I& y)
	{ return x.ring()->expt_pos(x,y); }

// Scalar multiplication.
// [Is this operation worth being specially optimized for the case of
// polynomials?? Polynomials have a faster scalar multiplication.
// We should use it.??]
inline const cl_ring_element operator* (const cl_I& x, const cl_ring_element& y)
	{ return y.ring()->mul(y.ring()->canonhom(x),y); }
inline const cl_ring_element operator* (const cl_ring_element& x, const cl_I& y)
	{ return x.ring()->mul(x.ring()->canonhom(y),x); }


// Ring of uninitialized elements.
// Any operation results in an exception being thrown.

// Thrown when an attempt is made to perform an operation on an uninitialized ring.
class uninitialized_ring_exception : public runtime_exception {
public:
	uninitialized_ring_exception ();
};

// Thrown when a ring element is uninitialized.
class uninitialized_exception : public runtime_exception {
public:
	explicit uninitialized_exception (const _cl_ring_element& obj);
	uninitialized_exception (const _cl_ring_element& obj_x, const _cl_ring_element& obj_y);
};

extern const cl_ring cl_no_ring;
extern cl_class cl_class_no_ring;

class cl_no_ring_init_helper
{
	static int count;
public:
	cl_no_ring_init_helper();
	~cl_no_ring_init_helper();
};
static cl_no_ring_init_helper cl_no_ring_init_helper_instance;

inline cl_ring::cl_ring ()
	: cl_rcpointer (as_cl_private_thing(cl_no_ring)) {}
inline _cl_ring_element::_cl_ring_element ()
	: rep ((cl_private_thing) cl_combine(cl_FN_tag,0)) {}
inline cl_ring_element::cl_ring_element ()
	: _cl_ring_element (), _ring () {}


// Support for built-in number rings.
// Beware, they are not optimally efficient.

template <class T>
struct cl_number_ring_ops {
	bool (* contains) (const cl_number&);
	bool (* equal) (const T&, const T&);
	bool (* zerop) (const T&);
	const T (* plus) (const T&, const T&);
	const T (* minus) (const T&, const T&);
	const T (* uminus) (const T&);
	const T (* mul) (const T&, const T&);
	const T (* square) (const T&);
	const T (* expt_pos) (const T&, const cl_I&);
};
class cl_heap_number_ring : public cl_heap_ring {
public:
	cl_number_ring_ops<cl_number>* ops;
	// Constructor.
	cl_heap_number_ring (cl_ring_setops* setopv, cl_ring_addops* addopv, cl_ring_mulops* mulopv, cl_number_ring_ops<cl_number>* opv)
		: cl_heap_ring (setopv,addopv,mulopv), ops (opv) {}
};

class cl_number_ring : public cl_ring {
public:
	cl_number_ring (cl_heap_number_ring* r)
		: cl_ring (r) {}
};

template <class T>
class cl_specialized_number_ring : public cl_number_ring {
public:
	cl_specialized_number_ring ();
};

// Type test.
inline bool instanceof (const cl_number& x, const cl_number_ring& R)
{
	return ((cl_heap_number_ring*) R.heappointer)->ops->contains(x);
}


// Hack section.

// Conversions to subtypes without checking:
// The2(cl_MI)(x) converts x to a cl_MI, without change of representation!
  #define The(type)  *(const type *) & cl_identity
  #define The2(type)  *(const type *) & cl_identity2
// This inline function is for type checking purposes only.
  inline const cl_ring& cl_identity (const cl_ring& r) { return r; }
  inline const cl_ring_element& cl_identity2 (const cl_ring_element& x) { return x; }
  inline const cl_gcobject& cl_identity (const _cl_ring_element& x) { return x.rep; }


// Debugging support.
#ifdef CL_DEBUG
extern int cl_ring_debug_module;
CL_FORCE_LINK(cl_ring_debug_dummy, cl_ring_debug_module)
#endif

}  // namespace cln

#endif /* _CL_RING_H */