This file is indexed.

/usr/include/libcoyotl/realutil.h is in libcoyotl-dev 3.1.0-6ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
//---------------------------------------------------------------------
//  Algorithmic Conjurings @ http://www.coyotegulch.com
//
//  realutil.h (libcoyotl)
//
//  A collection of useful functions for working with numbers.
//---------------------------------------------------------------------
//
//  Copyright 1990-2005 Scott Robert Ladd
//
//  This program is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//  
//  This program is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//  
//  You should have received a copy of the GNU General Public License
//  along with this program; if not, write to the
//      Free Software Foundation, Inc.
//      59 Temple Place - Suite 330
//      Boston, MA 02111-1307, USA.
//
//-----------------------------------------------------------------------
//
//  For more information on this software package, please visit
//  Scott's web site, Coyote Gulch Productions, at:
//
//      http://www.coyotegulch.com
//  
//-----------------------------------------------------------------------

#if !defined(LIBCOYOTL_REALUTIL_H)
#define LIBCOYOTL_REALUTIL_H

#include <cstddef>
#include <cmath>
#include <limits>

namespace libcoyotl
{
    //! Round to nearest value
    /*!
        Rounds a value to nearest integer, rounding to even for
        exact fractions of 0.5.
    */
    template <typename T>
    T round_nearest(T x)
    {
        T result, fraction, dummy;

        fraction = fabs(modf(x,&result));

        if (fraction == T(0.0))
            return result;

        if (fraction == T(0.5))
        {
            if (modf(result / T(2.0), &dummy) != T(0.0))
            {
                if (x < T(0.0))
                    result -= T(1.0);
                else
                    result += T(1.0);
            }
        }
        else
        {
            if (fraction > T(0.5))
            {
                if (x < T(0.0))
                    result -= T(1.0);
                else
                    result += T(1.0);
            }
        }

        return result;
    }

    // Set number of significant digits in a floating-point value
    /*!
        Returns the given value rounded for the number of specified decimal
        digits of precision.
        \param x - Original value to be rounded
        \param n - Number of significant digits
        \return The value <i>x</i> rounded to <i>n</i> digits of precision
    */
    template <typename T>
    T sigdig(T x, unsigned short n)
    {
        T scale_factor, result;

        // is asking for no digits, or more digits than in double, simply return x
        if ((n == 0) || (n > std::numeric_limits<T>::digits10))
            result = x;
        else
        {
            // find a factor of ten such that all significant digits will
            //    be in the integer part of the double
            scale_factor = pow(T(10.0),T((int)n - 1 - (int)floor(log10(fabs(x)))));

            // scale up, round, and scale down
            result = round_nearest(x * scale_factor) / scale_factor;
        }

        return result;
    }

    //! Approximately equality
    /*!
        Determines if one value is approximately equal to another. This is primarily
        intended for floating-point types, where two computed values may not be
        precisely equal in terms of encoded floating-point bits, even though "hand"
        calculations would produce equal results.
        \param a - First operand
        \param b - Second operand
        \param tolerance - The size of the range used to determine equivalence. By
            default, this value is 1. To be considered equal to <i>b</i>, <i>a</i>
            must fall in the range (b - (tolerance * &epsilon;)) - (b + (tolerance * &epsilon;)),
            where &epsilon; is the minimum possible diffeence between two floating-point
            values of the given type.
        \return true if <i>a</i> falls in the range of equivalence with <i>b</i>; false otherwise
    */
    template <typename T>
    bool are_equal(T a, T b, T tolerance = T(1.0))
    {
        // find the range of tolerance
        T adjustment = tolerance * std::numeric_limits<T>::epsilon();

        // set high and low bounds on a's value
        T low = b - adjustment;
        T hi  = b + adjustment;

        // compare a to range
        return ((a >= low) && (a <= hi));
    }

    // Lowest common multiple
    /*!
        Calculates the lowest common multiple for two values.
    */
    unsigned long lcm(unsigned long x, unsigned long y);

    // Greatest common denominator
    /*!
        Calculates the greatest common denominator for two values.
    */
    unsigned long gcd(unsigned long x, unsigned long y);

    //! Generic absolute value template function
    /*!
        Calculates the absolute value for any numeric type.
    */
    template <class T> inline T abs_val(T value)
    {
        return (value < 0 ? (-value) : value);
    }

    //! Absolute value function, specialization
    /*!
        Specialization of template function for <i>unsigned long</i> values.
    */
    inline unsigned long abs_val(unsigned long value)
    {
        return value;
    }

    //! Absolute value function, specialization
    /*!
        Specialization of template function for <i>unsigned int</i> values.
    */
    inline unsigned int abs_val(unsigned int value)
    {
        return value;
    }

    //! Absolute value function, specialization
    /*!
        Specialization of template function for <i>unsigned short</i> values.
    */
    inline unsigned short abs_val(unsigned short value)
    {
        return value;
    }

    //! Absolute value function, specialization
    /*!
        Specialization of template function for <i>unsigned char</i> values.
    */
    inline unsigned char abs_val(unsigned char value)
    {
        return value;
    }

    //! Minimum value function template
    /*!
        Returns the lesser of two values.
    */
    template <class T> inline T min_of(T x1,T x2)
    {
        return (x1 < x2 ? x1 : x2);
    }

    //! Maximum value function template
    /*!
        Returns the greater of two values.
    */
    template <class T> inline T max_of(T x1,T x2)
    {
        return (x1 > x2 ? x1 : x2);
    }

    //! Hyperbolic arcsine 
    /*!
        Calculates sinh<sup>-1</sup>.
    */
    inline double asinh(const double& x)
    {
        return log(x + sqrt(x * x + 1.0));
    }

    //! Hyperbolic arccosine 
    /*!
        Calculates cosh<sup>-1</sup>.
    */
    inline double acosh(const double& x)
    {
        return log(x + sqrt(x * x - 1.0));
    }

    //! Hyperbolic arctangent 
    /*!
        Calculates tanh<sup>-1</sup>.
    */
    inline double atanh(const double& x)
    {
        return log((1.0 + x) / (1.0 - x)) / 2.0;
    }
    
} // end namespace libcoyotl

#endif