This file is indexed.

/usr/include/dolfin/adaptivity/ErrorControl.h is in libdolfin1.3-dev 1.3.0+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
// Copyright (C) 2010 Marie E. Rognes
//
// This file is part of DOLFIN.
//
// DOLFIN is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// DOLFIN is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
//
// First added:  2010-08-19
// Last changed: 2012-09-03

#ifndef __ERROR_CONTROL_H
#define __ERROR_CONTROL_H

#include <vector>
#include <boost/shared_ptr.hpp>

#include <dolfin/common/Hierarchical.h>
#include <dolfin/common/Variable.h>
#include <dolfin/fem/LinearVariationalSolver.h>
#include "adapt.h"

namespace dolfin
{

  class DirichletBC;
  class Form;
  class Function;
  class FunctionSpace;
  class SpecialFacetFunction;
  class Vector;

  template <typename T> class MeshFunction;

  /// (Goal-oriented) Error Control class.

  /// The notation used here follows the notation in "Automated
  /// goal-oriented error control I: stationary variational problems",
  /// ME Rognes and A Logg, 2010-2011.

  class ErrorControl : public Hierarchical<ErrorControl>, public Variable
  {
  public:

    /// Create error control object
    ///
    /// *Arguments*
    ///     a_star (_Form_)
    ///        the bilinear form for the dual problem
    ///     L_star (_Form_)
    ///        the linear form for the dual problem
    ///     residual (_Form_)
    ///        a functional for the residual (error estimate)
    ///     a_R_T (_Form_)
    ///        the bilinear form for the strong cell residual problem
    ///     L_R_T (_Form_)
    ///        the linear form for the strong cell residual problem
    ///     a_R_dT (_Form_)
    ///        the bilinear form for the strong facet residual problem
    ///     L_R_dT (_Form_)
    ///        the linear form for the strong facet residual problem
    ///     eta_T (_Form_)
    ///        a linear form over DG_0 for error indicators
    ///     is_linear (bool)
    ///        true iff primal problem is linear
    ErrorControl(boost::shared_ptr<Form> a_star,
                 boost::shared_ptr<Form> L_star,
                 boost::shared_ptr<Form> residual,
                 boost::shared_ptr<Form> a_R_T,
                 boost::shared_ptr<Form> L_R_T,
                 boost::shared_ptr<Form> a_R_dT,
                 boost::shared_ptr<Form> L_R_dT,
                 boost::shared_ptr<Form> eta_T,
                 bool is_linear);

    /// Destructor.
    ~ErrorControl() {}

    /// Default parameter values:
    static Parameters default_parameters()
    {
      Parameters p("error_control");

      // Set parameters for dual solver
      Parameters p_dual(LinearVariationalSolver::default_parameters());
      p_dual.rename("dual_variational_solver");
      p.add(p_dual);

      return p;
    }


    /// Estimate the error relative to the goal M of the discrete
    /// approximation 'u' relative to the variational formulation by
    /// evaluating the weak residual at an approximation to the dual
    /// solution.
    ///
    /// *Arguments*
    ///     u (_Function_)
    ///        the primal approximation
    ///
    ///     bcs (std::vector<_DirichletBC_>)
    ///         the primal boundary conditions
    ///
    /// *Returns*
    ///     double
    ///         error estimate
    double estimate_error(const Function& u,
           const std::vector<boost::shared_ptr<const DirichletBC> > bcs);

    /// Compute error indicators
    ///
    /// *Arguments*
    ///     indicators (_MeshFunction_ <double>)
    ///         the error indicators (to be computed)
    ///
    ///     u (_Function_)
    ///         the primal approximation
    void compute_indicators(MeshFunction<double>& indicators,
                            const Function& u);

    /// Compute strong representation (strong cell and facet
    /// residuals) of the weak residual.
    ///
    /// *Arguments*
    ///     R_T (_Function_)
    ///         the strong cell residual (to be computed)
    ///
    ///     R_dT (_SpecialFacetFunction_)
    ///         the strong facet residual (to be computed)
    ///
    ///     u (_Function_)
    ///         the primal approximation
    void residual_representation(Function& R_T,
                                 SpecialFacetFunction& R_dT,
                                 const Function& u);

    /// Compute representation for the strong cell residual
    /// from the weak residual
    ///
    /// *Arguments*
    ///     R_T (_Function_)
    ///         the strong cell residual (to be computed)
    ///
    ///     u (_Function_)
    ///         the primal approximation
    void compute_cell_residual(Function& R_T, const Function& u);

    /// Compute representation for the strong facet residual from the
    /// weak residual and the strong cell residual
    ///
    /// *Arguments*
    ///     R_dT (_SpecialFacetFunction_)
    ///         the strong facet residual (to be computed)
    ///
    ///     u (_Function_)
    ///         the primal approximation
    ///
    ///     R_T (_Function_)
    ///         the strong cell residual
    void compute_facet_residual(SpecialFacetFunction& R_dT,
                                const Function& u,
                                const Function& R_T);

    /// Compute dual approximation defined by dual variational
    /// problem and dual boundary conditions given by homogenized primal
    /// boundary conditions.
    ///
    /// *Arguments*
    ///     z (_Function_)
    ///         the dual approximation (to be computed)
    ///
    ///     bcs (std::vector<_DirichletBC_>)
    ///         the primal boundary conditions
    void compute_dual(Function& z,
         const std::vector<boost::shared_ptr<const DirichletBC> > bcs);

    /// Compute extrapolation with boundary conditions
    ///
    /// *Arguments*
    ///     z (_Function_)
    ///         the extrapolated function (to be computed)
    ///
    ///     bcs (std::vector<_DirichletBC_>)
    ///         the dual boundary conditions
    void compute_extrapolation(const Function& z,
         const std::vector<boost::shared_ptr<const DirichletBC> > bcs);

    friend const ErrorControl& adapt(const ErrorControl& ec,
                                     boost::shared_ptr<const Mesh> adapted_mesh,
                                     bool adapt_coefficients);

  private:

    void apply_bcs_to_extrapolation(const std::vector<boost::shared_ptr<const DirichletBC> > bcs);

    // Bilinear and linear form for dual problem
    boost::shared_ptr<Form> _a_star;
    boost::shared_ptr<Form> _L_star;

    // Functional for evaluating residual (error estimate)
    boost::shared_ptr<Form> _residual;

    // Bilinear and linear form for computing cell residual R_T
    boost::shared_ptr<Form> _a_R_T;
    boost::shared_ptr<Form> _L_R_T;

    // Bilinear and linear form for computing facet residual R_dT
    boost::shared_ptr<Form> _a_R_dT;
    boost::shared_ptr<Form> _L_R_dT;

    // Linear form for computing error indicators
    boost::shared_ptr<Form> _eta_T;

    // Computed extrapolation
    boost::shared_ptr<Function> _Ez_h;

    bool _is_linear;

    // Function spaces for extrapolation, cell bubble and cell cone:
    boost::shared_ptr<const FunctionSpace> _E;
    boost::shared_ptr<const FunctionSpace> _B;
    boost::shared_ptr<const FunctionSpace> _C;

    // Functions for cell bubble, cell cone, computed cell residual,
    // computed facet residual, and interpolated extrapolated(!) dual:
    boost::shared_ptr<Function> _cell_bubble;
    boost::shared_ptr<Function> _cell_cone;
    boost::shared_ptr<Function> _R_T;
    boost::shared_ptr<SpecialFacetFunction> _R_dT;
    boost::shared_ptr<Function> _Pi_E_z_h;
  };
}

#endif