This file is indexed.

/usr/include/dolfin/ale/Poisson1D.h is in libdolfin1.3-dev 1.3.0+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
// This code conforms with the UFC specification version 2.3.0
// and was automatically generated by FFC version 1.3.0.
//
// This code was generated with the option '-l dolfin' and
// contains DOLFIN-specific wrappers that depend on DOLFIN.
// 
// This code was generated with the following parameters:
// 
//   cache_dir:                      ''
//   convert_exceptions_to_warnings: False
//   cpp_optimize:                   True
//   cpp_optimize_flags:             '-O2'
//   epsilon:                        1e-14
//   error_control:                  False
//   form_postfix:                   True
//   format:                         'dolfin'
//   log_level:                      10
//   log_prefix:                     ''
//   no_ferari:                      True
//   optimize:                       True
//   output_dir:                     '.'
//   precision:                      15
//   quadrature_degree:              'auto'
//   quadrature_rule:                'auto'
//   representation:                 'auto'
//   restrict_keyword:               ''
//   split:                          False

#ifndef __POISSON1D_H
#define __POISSON1D_H

#include <cmath>
#include <stdexcept>
#include <fstream>
#include <ufc.h>

/// This class defines the interface for a finite element.

class poisson1d_finite_element_0: public ufc::finite_element
{
public:

  /// Constructor
  poisson1d_finite_element_0() : ufc::finite_element()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson1d_finite_element_0()
  {
    // Do nothing
  }

  /// Return a string identifying the finite element
  virtual const char* signature() const
  {
    return "FiniteElement('Lagrange', Domain(Cell('interval', 1), 'interval_multiverse', 1, 1), 1, None)";
  }

  /// Return the cell shape
  virtual ufc::shape cell_shape() const
  {
    return ufc::interval;
  }

  /// Return the topological dimension of the cell shape
  virtual std::size_t topological_dimension() const
  {
    return 1;
  }

  /// Return the geometric dimension of the cell shape
  virtual std::size_t geometric_dimension() const
  {
    return 1;
  }

  /// Return the dimension of the finite element function space
  virtual std::size_t space_dimension() const
  {
    return 2;
  }

  /// Return the rank of the value space
  virtual std::size_t value_rank() const
  {
    return 0;
  }

  /// Return the dimension of the value space for axis i
  virtual std::size_t value_dimension(std::size_t i) const
  {
    return 1;
  }

  /// Evaluate basis function i at given point x in cell
  virtual void evaluate_basis(std::size_t i,
                              double* values,
                              const double* x,
                              const double* vertex_coordinates,
                              int cell_orientation) const
  {
    // Compute Jacobian
    double J[1];
    compute_jacobian_interval_1d(J, vertex_coordinates);
    
    // Compute Jacobian inverse and determinant
    double K[1];
    double detJ;
    compute_jacobian_inverse_interval_1d(K, detJ, J);
    
    
    // Get coordinates and map to the reference (FIAT) element
    double X = (2.0*x[0] - vertex_coordinates[0] - vertex_coordinates[1]) / J[0];
    
    // Reset values
    *values = 0.0;
    switch (i)
    {
    case 0:
      {
        
      // Array of basisvalues
      double basisvalues[2] = {0.0, 0.0};
      
      // Declare helper variables
      
      // Compute basisvalues
      basisvalues[0] = 1.0;
      basisvalues[1] = X;
      for (unsigned int r = 0; r < 2; r++)
      {
        basisvalues[r] *= std::sqrt((0.5 + r));
      }// end loop over 'r'
      
      // Table(s) of coefficients
      static const double coefficients0[2] = \
      {0.707106781186547, -0.408248290463863};
      
      // Compute value(s)
      for (unsigned int r = 0; r < 2; r++)
      {
        *values += coefficients0[r]*basisvalues[r];
      }// end loop over 'r'
        break;
      }
    case 1:
      {
        
      // Array of basisvalues
      double basisvalues[2] = {0.0, 0.0};
      
      // Declare helper variables
      
      // Compute basisvalues
      basisvalues[0] = 1.0;
      basisvalues[1] = X;
      for (unsigned int r = 0; r < 2; r++)
      {
        basisvalues[r] *= std::sqrt((0.5 + r));
      }// end loop over 'r'
      
      // Table(s) of coefficients
      static const double coefficients0[2] = \
      {0.707106781186547, 0.408248290463863};
      
      // Compute value(s)
      for (unsigned int r = 0; r < 2; r++)
      {
        *values += coefficients0[r]*basisvalues[r];
      }// end loop over 'r'
        break;
      }
    }
    
  }

  /// Evaluate all basis functions at given point x in cell
  virtual void evaluate_basis_all(double* values,
                                  const double* x,
                                  const double* vertex_coordinates,
                                  int cell_orientation) const
  {
    // Helper variable to hold values of a single dof.
    double dof_values = 0.0;
    
    // Loop dofs and call evaluate_basis
    for (unsigned int r = 0; r < 2; r++)
    {
      evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation);
      values[r] = dof_values;
    }// end loop over 'r'
  }

  /// Evaluate order n derivatives of basis function i at given point x in cell
  virtual void evaluate_basis_derivatives(std::size_t i,
                                          std::size_t n,
                                          double* values,
                                          const double* x,
                                          const double* vertex_coordinates,
                                          int cell_orientation) const
  {
    
    // Compute number of derivatives.
    unsigned int num_derivatives = 1;
    for (unsigned int r = 0; r < n; r++)
    {
      num_derivatives *= 1;
    }// end loop over 'r'
    
    // Reset values. Assuming that values is always an array.
    for (unsigned int r = 0; r < num_derivatives; r++)
    {
      values[r] = 0.0;
    }// end loop over 'r'
    
    // Call evaluate_basis if order of derivatives is equal to zero.
    if (n == 0)
    {
      evaluate_basis(i, values, x, vertex_coordinates, cell_orientation);
      return ;
    }
    
    // If order of derivatives is greater than the maximum polynomial degree, return zeros.
    if (n > 1)
    {
    return ;
    }
    
    // Compute Jacobian
    double J[1];
    compute_jacobian_interval_1d(J, vertex_coordinates);
    
    // Compute Jacobian inverse and determinant
    double K[1];
    double detJ;
    compute_jacobian_inverse_interval_1d(K, detJ, J);
    
    
    // Get coordinates and map to the reference (FIAT) element
    double X = (2.0*x[0] - vertex_coordinates[0] - vertex_coordinates[1]) / J[0];
    
    // Declare two dimensional array that holds combinations of derivatives and initialise
    unsigned int combinations[1][1];
    for (unsigned int row = 0; row < 1; row++)
    {
      for (unsigned int col = 0; col < 1; col++)
        combinations[row][col] = 0;
    }
    
    // Generate combinations of derivatives
    for (unsigned int row = 1; row < num_derivatives; row++)
    {
      for (unsigned int num = 0; num < row; num++)
      {
        for (unsigned int col = n-1; col+1 > 0; col--)
        {
          if (combinations[row][col] + 1 > 0)
            combinations[row][col] = 0;
          else
          {
            combinations[row][col] += 1;
            break;
          }
        }
      }
    }
    
    // Compute inverse of Jacobian
    const double Jinv[1][1] = {{K[0]}};
    
    // Declare transformation matrix
    // Declare pointer to two dimensional array and initialise
    double transform[1][1];
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      for (unsigned int k = 0; k < num_derivatives; k++)
        transform[j][k] = 1;
    }
    
    // Construct transformation matrix
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        for (unsigned int k = 0; k < n; k++)
          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];
      }
    }
    switch (i)
    {
    case 0:
      {
        
      // Array of basisvalues
      double basisvalues[2] = {0.0, 0.0};
      
      // Declare helper variables
      
      // Compute basisvalues
      basisvalues[0] = 1.0;
      basisvalues[1] = X;
      for (unsigned int r = 0; r < 2; r++)
      {
        basisvalues[r] *= std::sqrt((0.5 + r));
      }// end loop over 'r'
      
      // Table(s) of coefficients
      static const double coefficients0[2] = \
      {0.707106781186547, -0.408248290463863};
      
      // Tables of derivatives of the polynomial base (transpose).
      static const double dmats0[2][2] = \
      {{0.0, 0.0},
      {3.46410161513775, 0.0}};
      
      // Compute reference derivatives.
      // Declare array of derivatives on FIAT element.
      double derivatives[1];
      for (unsigned int r = 0; r < 1; r++)
      {
        derivatives[r] = 0.0;
      }// end loop over 'r'
      
      // Declare derivative matrix (of polynomial basis).
      double dmats[2][2] = \
      {{1.0, 0.0},
      {0.0, 1.0}};
      
      // Declare (auxiliary) derivative matrix (of polynomial basis).
      double dmats_old[2][2] = \
      {{1.0, 0.0},
      {0.0, 1.0}};
      
      // Loop possible derivatives.
      for (unsigned int r = 0; r < num_derivatives; r++)
      {
        // Resetting dmats values to compute next derivative.
        for (unsigned int t = 0; t < 2; t++)
        {
          for (unsigned int u = 0; u < 2; u++)
          {
            dmats[t][u] = 0.0;
            if (t == u)
            {
            dmats[t][u] = 1.0;
            }
            
          }// end loop over 'u'
        }// end loop over 't'
        
        // Looping derivative order to generate dmats.
        for (unsigned int s = 0; s < n; s++)
        {
          // Updating dmats_old with new values and resetting dmats.
          for (unsigned int t = 0; t < 2; t++)
          {
            for (unsigned int u = 0; u < 2; u++)
            {
              dmats_old[t][u] = dmats[t][u];
              dmats[t][u] = 0.0;
            }// end loop over 'u'
          }// end loop over 't'
          
          // Update dmats using an inner product.
          if (combinations[r][s] == 0)
          {
          for (unsigned int t = 0; t < 2; t++)
          {
            for (unsigned int u = 0; u < 2; u++)
            {
              for (unsigned int tu = 0; tu < 2; tu++)
              {
                dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u];
              }// end loop over 'tu'
            }// end loop over 'u'
          }// end loop over 't'
          }
          
        }// end loop over 's'
        for (unsigned int s = 0; s < 2; s++)
        {
          for (unsigned int t = 0; t < 2; t++)
          {
            derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t];
          }// end loop over 't'
        }// end loop over 's'
      }// end loop over 'r'
      
      // Transform derivatives back to physical element
      for (unsigned int r = 0; r < num_derivatives; r++)
      {
        for (unsigned int s = 0; s < num_derivatives; s++)
        {
          values[r] += transform[r][s]*derivatives[s];
        }// end loop over 's'
      }// end loop over 'r'
        break;
      }
    case 1:
      {
        
      // Array of basisvalues
      double basisvalues[2] = {0.0, 0.0};
      
      // Declare helper variables
      
      // Compute basisvalues
      basisvalues[0] = 1.0;
      basisvalues[1] = X;
      for (unsigned int r = 0; r < 2; r++)
      {
        basisvalues[r] *= std::sqrt((0.5 + r));
      }// end loop over 'r'
      
      // Table(s) of coefficients
      static const double coefficients0[2] = \
      {0.707106781186547, 0.408248290463863};
      
      // Tables of derivatives of the polynomial base (transpose).
      static const double dmats0[2][2] = \
      {{0.0, 0.0},
      {3.46410161513775, 0.0}};
      
      // Compute reference derivatives.
      // Declare array of derivatives on FIAT element.
      double derivatives[1];
      for (unsigned int r = 0; r < 1; r++)
      {
        derivatives[r] = 0.0;
      }// end loop over 'r'
      
      // Declare derivative matrix (of polynomial basis).
      double dmats[2][2] = \
      {{1.0, 0.0},
      {0.0, 1.0}};
      
      // Declare (auxiliary) derivative matrix (of polynomial basis).
      double dmats_old[2][2] = \
      {{1.0, 0.0},
      {0.0, 1.0}};
      
      // Loop possible derivatives.
      for (unsigned int r = 0; r < num_derivatives; r++)
      {
        // Resetting dmats values to compute next derivative.
        for (unsigned int t = 0; t < 2; t++)
        {
          for (unsigned int u = 0; u < 2; u++)
          {
            dmats[t][u] = 0.0;
            if (t == u)
            {
            dmats[t][u] = 1.0;
            }
            
          }// end loop over 'u'
        }// end loop over 't'
        
        // Looping derivative order to generate dmats.
        for (unsigned int s = 0; s < n; s++)
        {
          // Updating dmats_old with new values and resetting dmats.
          for (unsigned int t = 0; t < 2; t++)
          {
            for (unsigned int u = 0; u < 2; u++)
            {
              dmats_old[t][u] = dmats[t][u];
              dmats[t][u] = 0.0;
            }// end loop over 'u'
          }// end loop over 't'
          
          // Update dmats using an inner product.
          if (combinations[r][s] == 0)
          {
          for (unsigned int t = 0; t < 2; t++)
          {
            for (unsigned int u = 0; u < 2; u++)
            {
              for (unsigned int tu = 0; tu < 2; tu++)
              {
                dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u];
              }// end loop over 'tu'
            }// end loop over 'u'
          }// end loop over 't'
          }
          
        }// end loop over 's'
        for (unsigned int s = 0; s < 2; s++)
        {
          for (unsigned int t = 0; t < 2; t++)
          {
            derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t];
          }// end loop over 't'
        }// end loop over 's'
      }// end loop over 'r'
      
      // Transform derivatives back to physical element
      for (unsigned int r = 0; r < num_derivatives; r++)
      {
        for (unsigned int s = 0; s < num_derivatives; s++)
        {
          values[r] += transform[r][s]*derivatives[s];
        }// end loop over 's'
      }// end loop over 'r'
        break;
      }
    }
    
  }

  /// Evaluate order n derivatives of all basis functions at given point x in cell
  virtual void evaluate_basis_derivatives_all(std::size_t n,
                                              double* values,
                                              const double* x,
                                              const double* vertex_coordinates,
                                              int cell_orientation) const
  {
    // Call evaluate_basis_all if order of derivatives is equal to zero.
    if (n == 0)
    {
      evaluate_basis_all(values, x, vertex_coordinates, cell_orientation);
      return ;
    }
    
    // Compute number of derivatives.
    unsigned int num_derivatives = 1;
    for (unsigned int r = 0; r < n; r++)
    {
      num_derivatives *= 1;
    }// end loop over 'r'
    
    // Set values equal to zero.
    for (unsigned int r = 0; r < 2; r++)
    {
      for (unsigned int s = 0; s < num_derivatives; s++)
      {
        values[r*num_derivatives + s] = 0.0;
      }// end loop over 's'
    }// end loop over 'r'
    
    // If order of derivatives is greater than the maximum polynomial degree, return zeros.
    if (n > 1)
    {
      return ;
    }
    
    // Helper variable to hold values of a single dof.
    double dof_values[1];
    for (unsigned int r = 0; r < 1; r++)
    {
      dof_values[r] = 0.0;
    }// end loop over 'r'
    
    // Loop dofs and call evaluate_basis_derivatives.
    for (unsigned int r = 0; r < 2; r++)
    {
      evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation);
      for (unsigned int s = 0; s < num_derivatives; s++)
      {
        values[r*num_derivatives + s] = dof_values[s];
      }// end loop over 's'
    }// end loop over 'r'
  }

  /// Evaluate linear functional for dof i on the function f
  virtual double evaluate_dof(std::size_t i,
                              const ufc::function& f,
                              const double* vertex_coordinates,
                              int cell_orientation,
                              const ufc::cell& c) const
  {
    // Declare variables for result of evaluation
    double vals[1];
    
    // Declare variable for physical coordinates
    double y[1];
    switch (i)
    {
    case 0:
      {
        y[0] = vertex_coordinates[0];
      f.evaluate(vals, y, c);
      return vals[0];
        break;
      }
    case 1:
      {
        y[0] = vertex_coordinates[1];
      f.evaluate(vals, y, c);
      return vals[0];
        break;
      }
    }
    
    return 0.0;
  }

  /// Evaluate linear functionals for all dofs on the function f
  virtual void evaluate_dofs(double* values,
                             const ufc::function& f,
                             const double* vertex_coordinates,
                             int cell_orientation,
                             const ufc::cell& c) const
  {
    // Declare variables for result of evaluation
    double vals[1];
    
    // Declare variable for physical coordinates
    double y[1];
    y[0] = vertex_coordinates[0];
    f.evaluate(vals, y, c);
    values[0] = vals[0];
    y[0] = vertex_coordinates[1];
    f.evaluate(vals, y, c);
    values[1] = vals[0];
  }

  /// Interpolate vertex values from dof values
  virtual void interpolate_vertex_values(double* vertex_values,
                                         const double* dof_values,
                                         const double* vertex_coordinates,
                                         int cell_orientation,
                                         const ufc::cell& c) const
  {
    // Evaluate function and change variables
    vertex_values[0] = dof_values[0];
    vertex_values[1] = dof_values[1];
  }

  /// Map coordinate xhat from reference cell to coordinate x in cell
  virtual void map_from_reference_cell(double* x,
                                       const double* xhat,
                                       const ufc::cell& c) const
  {
    throw std::runtime_error("map_from_reference_cell not yet implemented.");
  }

  /// Map from coordinate x in cell to coordinate xhat in reference cell
  virtual void map_to_reference_cell(double* xhat,
                                     const double* x,
                                     const ufc::cell& c) const
  {
    throw std::runtime_error("map_to_reference_cell not yet implemented.");
  }

  /// Return the number of sub elements (for a mixed element)
  virtual std::size_t num_sub_elements() const
  {
    return 0;
  }

  /// Create a new finite element for sub element i (for a mixed element)
  virtual ufc::finite_element* create_sub_element(std::size_t i) const
  {
    return 0;
  }

  /// Create a new class instance
  virtual ufc::finite_element* create() const
  {
    return new poisson1d_finite_element_0();
  }

};

/// This class defines the interface for a local-to-global mapping of
/// degrees of freedom (dofs).

class poisson1d_dofmap_0: public ufc::dofmap
{
public:

  /// Constructor
  poisson1d_dofmap_0() : ufc::dofmap()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson1d_dofmap_0()
  {
    // Do nothing
  }

  /// Return a string identifying the dofmap
  virtual const char* signature() const
  {
    return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('interval', 1), 'interval_multiverse', 1, 1), 1, None)";
  }

  /// Return true iff mesh entities of topological dimension d are needed
  virtual bool needs_mesh_entities(std::size_t d) const
  {
    switch (d)
    {
    case 0:
      {
        return true;
        break;
      }
    case 1:
      {
        return false;
        break;
      }
    }
    
    return false;
  }

  /// Return the topological dimension of the associated cell shape
  virtual std::size_t topological_dimension() const
  {
    return 1;
  }

  /// Return the geometric dimension of the associated cell shape
  virtual std::size_t geometric_dimension() const
  {
    return 1;
  }

  /// Return the dimension of the global finite element function space
  virtual std::size_t global_dimension(const std::vector<std::size_t>&
                                       num_global_entities) const
  {
    return num_global_entities[0];
  }

  /// Return the dimension of the local finite element function space for a cell
  virtual std::size_t local_dimension() const
  {
    return 2;
  }

  /// Return the number of dofs on each cell facet
  virtual std::size_t num_facet_dofs() const
  {
    return 1;
  }

  /// Return the number of dofs associated with each cell entity of dimension d
  virtual std::size_t num_entity_dofs(std::size_t d) const
  {
    switch (d)
    {
    case 0:
      {
        return 1;
        break;
      }
    case 1:
      {
        return 0;
        break;
      }
    }
    
    return 0;
  }

  /// Tabulate the local-to-global mapping of dofs on a cell
  virtual void tabulate_dofs(std::size_t* dofs,
                             const std::vector<std::size_t>& num_global_entities,
                             const ufc::cell& c) const
  {
    dofs[0] = c.entity_indices[0][0];
    dofs[1] = c.entity_indices[0][1];
  }

  /// Tabulate the local-to-local mapping from facet dofs to cell dofs
  virtual void tabulate_facet_dofs(std::size_t* dofs,
                                   std::size_t facet) const
  {
    switch (facet)
    {
    case 0:
      {
        dofs[0] = 0;
        break;
      }
    case 1:
      {
        dofs[0] = 1;
        break;
      }
    }
    
  }

  /// Tabulate the local-to-local mapping of dofs on entity (d, i)
  virtual void tabulate_entity_dofs(std::size_t* dofs,
                                    std::size_t d, std::size_t i) const
  {
    if (d > 1)
    {
    throw std::runtime_error("d is larger than dimension (1)");
    }
    
    switch (d)
    {
    case 0:
      {
        if (i > 1)
      {
      throw std::runtime_error("i is larger than number of entities (1)");
      }
      
      switch (i)
      {
      case 0:
        {
          dofs[0] = 0;
          break;
        }
      case 1:
        {
          dofs[0] = 1;
          break;
        }
      }
      
        break;
      }
    case 1:
      {
        
        break;
      }
    }
    
  }

  /// Tabulate the coordinates of all dofs on a cell
  virtual void tabulate_coordinates(double** dof_coordinates,
                                    const double* vertex_coordinates) const
  {
    dof_coordinates[0][0] = vertex_coordinates[0];
    dof_coordinates[1][0] = vertex_coordinates[1];
  }

  /// Return the number of sub dofmaps (for a mixed element)
  virtual std::size_t num_sub_dofmaps() const
  {
    return 0;
  }

  /// Create a new dofmap for sub dofmap i (for a mixed element)
  virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const
  {
    return 0;
  }

  /// Create a new class instance
  virtual ufc::dofmap* create() const
  {
    return new poisson1d_dofmap_0();
  }

};

/// This class defines the interface for the tabulation of the cell
/// tensor corresponding to the local contribution to a form from
/// the integral over a cell.

class poisson1d_cell_integral_0_otherwise: public ufc::cell_integral
{
public:

  /// Constructor
  poisson1d_cell_integral_0_otherwise() : ufc::cell_integral()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson1d_cell_integral_0_otherwise()
  {
    // Do nothing
  }

  /// Tabulate the tensor for the contribution from a local cell
  virtual void tabulate_tensor(double*  A,
                               const double * const *  w,
                               const double*  vertex_coordinates,
                               int cell_orientation) const
  {
    // Number of operations (multiply-add pairs) for Jacobian data:      3
    // Number of operations (multiply-add pairs) for geometry tensor:    1
    // Number of operations (multiply-add pairs) for tensor contraction: 0
    // Total number of operations (multiply-add pairs):                  4
    
    // Compute Jacobian
    double J[1];
    compute_jacobian_interval_1d(J, vertex_coordinates);
    
    // Compute Jacobian inverse and determinant
    double K[1];
    double detJ;
    compute_jacobian_inverse_interval_1d(K, detJ, J);
    
    // Set scale factor
    const double det = std::abs(detJ);
    
    // Compute geometry tensor
    const double G0_0_0 = det*K[0]*K[0];
    
    // Compute element tensor
    A[0] = G0_0_0;
    A[1] = -G0_0_0;
    A[2] = -G0_0_0;
    A[3] = G0_0_0;
  }

};

/// This class defines the interface for the assembly of the global
/// tensor corresponding to a form with r + n arguments, that is, a
/// mapping
///
///     a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R
///
/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r
/// global tensor A is defined by
///
///     A = a(V1, V2, ..., Vr, w1, w2, ..., wn),
///
/// where each argument Vj represents the application to the
/// sequence of basis functions of Vj and w1, w2, ..., wn are given
/// fixed functions (coefficients).

class poisson1d_form_0: public ufc::form
{
public:

  /// Constructor
  poisson1d_form_0() : ufc::form()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson1d_form_0()
  {
    // Do nothing
  }

  /// Return a string identifying the form
  virtual const char* signature() const
  {
    return "0650dbc51220f29e2586c728bd7ff63ddc121dfb080da1f1825fa375afb7929126d3d472127a5f95d45bd64dca28c6bd6e6493190e393656e2ccc6a979b5f538";
  }

  /// Return the rank of the global tensor (r)
  virtual std::size_t rank() const
  {
    return 2;
  }

  /// Return the number of coefficients (n)
  virtual std::size_t num_coefficients() const
  {
    return 0;
  }

  /// Return the number of cell domains
  virtual std::size_t num_cell_domains() const
  {
    return 0;
  }

  /// Return the number of exterior facet domains
  virtual std::size_t num_exterior_facet_domains() const
  {
    return 0;
  }

  /// Return the number of interior facet domains
  virtual std::size_t num_interior_facet_domains() const
  {
    return 0;
  }

  /// Return the number of point domains
  virtual std::size_t num_point_domains() const
  {
    return 0;
  }

  /// Return whether the form has any cell integrals
  virtual bool has_cell_integrals() const
  {
    return true;
  }

  /// Return whether the form has any exterior facet integrals
  virtual bool has_exterior_facet_integrals() const
  {
    return false;
  }

  /// Return whether the form has any interior facet integrals
  virtual bool has_interior_facet_integrals() const
  {
    return false;
  }

  /// Return whether the form has any point integrals
  virtual bool has_point_integrals() const
  {
    return false;
  }

  /// Create a new finite element for argument function i
  virtual ufc::finite_element* create_finite_element(std::size_t i) const
  {
    switch (i)
    {
    case 0:
      {
        return new poisson1d_finite_element_0();
        break;
      }
    case 1:
      {
        return new poisson1d_finite_element_0();
        break;
      }
    }
    
    return 0;
  }

  /// Create a new dofmap for argument function i
  virtual ufc::dofmap* create_dofmap(std::size_t i) const
  {
    switch (i)
    {
    case 0:
      {
        return new poisson1d_dofmap_0();
        break;
      }
    case 1:
      {
        return new poisson1d_dofmap_0();
        break;
      }
    }
    
    return 0;
  }

  /// Create a new cell integral on sub domain i
  virtual ufc::cell_integral* create_cell_integral(std::size_t i) const
  {
    return 0;
  }

  /// Create a new exterior facet integral on sub domain i
  virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const
  {
    return 0;
  }

  /// Create a new interior facet integral on sub domain i
  virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const
  {
    return 0;
  }

  /// Create a new point integral on sub domain i
  virtual ufc::point_integral* create_point_integral(std::size_t i) const
  {
    return 0;
  }

  /// Create a new cell integral on everywhere else
  virtual ufc::cell_integral* create_default_cell_integral() const
  {
    return new poisson1d_cell_integral_0_otherwise();
  }

  /// Create a new exterior facet integral on everywhere else
  virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const
  {
    return 0;
  }

  /// Create a new interior facet integral on everywhere else
  virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const
  {
    return 0;
  }

  /// Create a new point integral on everywhere else
  virtual ufc::point_integral* create_default_point_integral() const
  {
    return 0;
  }

};

// DOLFIN wrappers

// Standard library includes
#include <string>

// DOLFIN includes
#include <dolfin/common/NoDeleter.h>
#include <dolfin/mesh/Restriction.h>
#include <dolfin/fem/FiniteElement.h>
#include <dolfin/fem/DofMap.h>
#include <dolfin/fem/Form.h>
#include <dolfin/function/FunctionSpace.h>
#include <dolfin/function/GenericFunction.h>
#include <dolfin/function/CoefficientAssigner.h>
#include <dolfin/adaptivity/ErrorControl.h>
#include <dolfin/adaptivity/GoalFunctional.h>

namespace Poisson1D
{

class Form_a_FunctionSpace_0: public dolfin::FunctionSpace
{
public:

  //--- Constructors for standard function space, 2 different versions ---

  // Create standard function space (reference version)
  Form_a_FunctionSpace_0(const dolfin::Mesh& mesh):
    dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                          boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson1d_finite_element_0()))),
                          boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dofmap>(new poisson1d_dofmap_0()), mesh)))
  {
    // Do nothing
  }

  // Create standard function space (shared pointer version)
  Form_a_FunctionSpace_0(boost::shared_ptr<const dolfin::Mesh> mesh):
    dolfin::FunctionSpace(mesh,
                          boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson1d_finite_element_0()))),
                          boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dofmap>(new poisson1d_dofmap_0()), *mesh)))
  {
    // Do nothing
  }

  //--- Constructors for constrained function space, 2 different versions ---

  // Create standard function space (reference version)
  Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain):
    dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                          boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson1d_finite_element_0()))),
                          boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dofmap>(new poisson1d_dofmap_0()), mesh,
                              dolfin::reference_to_no_delete_pointer(constrained_domain))))
  {
    // Do nothing
  }

  // Create standard function space (shared pointer version)
  Form_a_FunctionSpace_0(boost::shared_ptr<const dolfin::Mesh> mesh, boost::shared_ptr<const dolfin::SubDomain> constrained_domain):
    dolfin::FunctionSpace(mesh,
                          boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson1d_finite_element_0()))),
                          boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dofmap>(new poisson1d_dofmap_0()), *mesh, constrained_domain)))
  {
    // Do nothing
  }

  //--- Constructors for restricted function space, 2 different versions ---

  // Create restricted function space (reference version)
  Form_a_FunctionSpace_0(const dolfin::Restriction& restriction):
    dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()),
                          boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson1d_finite_element_0()))),
                          boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dofmap>(new poisson1d_dofmap_0()),
                                                                                     reference_to_no_delete_pointer(restriction))))
  {
    // Do nothing
  }

  // Create restricted function space (shared pointer version)
  Form_a_FunctionSpace_0(boost::shared_ptr<const dolfin::Restriction> restriction):
    dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()),
                          boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson1d_finite_element_0()))),
                          boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dofmap>(new poisson1d_dofmap_0()),
                                                                                     restriction)))
  {
    // Do nothing
  }

  // Copy constructor
  ~Form_a_FunctionSpace_0()
  {
  }

};

class Form_a_FunctionSpace_1: public dolfin::FunctionSpace
{
public:

  //--- Constructors for standard function space, 2 different versions ---

  // Create standard function space (reference version)
  Form_a_FunctionSpace_1(const dolfin::Mesh& mesh):
    dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                          boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson1d_finite_element_0()))),
                          boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dofmap>(new poisson1d_dofmap_0()), mesh)))
  {
    // Do nothing
  }

  // Create standard function space (shared pointer version)
  Form_a_FunctionSpace_1(boost::shared_ptr<const dolfin::Mesh> mesh):
    dolfin::FunctionSpace(mesh,
                          boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson1d_finite_element_0()))),
                          boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dofmap>(new poisson1d_dofmap_0()), *mesh)))
  {
    // Do nothing
  }

  //--- Constructors for constrained function space, 2 different versions ---

  // Create standard function space (reference version)
  Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain):
    dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                          boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson1d_finite_element_0()))),
                          boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dofmap>(new poisson1d_dofmap_0()), mesh,
                              dolfin::reference_to_no_delete_pointer(constrained_domain))))
  {
    // Do nothing
  }

  // Create standard function space (shared pointer version)
  Form_a_FunctionSpace_1(boost::shared_ptr<const dolfin::Mesh> mesh, boost::shared_ptr<const dolfin::SubDomain> constrained_domain):
    dolfin::FunctionSpace(mesh,
                          boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson1d_finite_element_0()))),
                          boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dofmap>(new poisson1d_dofmap_0()), *mesh, constrained_domain)))
  {
    // Do nothing
  }

  //--- Constructors for restricted function space, 2 different versions ---

  // Create restricted function space (reference version)
  Form_a_FunctionSpace_1(const dolfin::Restriction& restriction):
    dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()),
                          boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson1d_finite_element_0()))),
                          boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dofmap>(new poisson1d_dofmap_0()),
                                                                                     reference_to_no_delete_pointer(restriction))))
  {
    // Do nothing
  }

  // Create restricted function space (shared pointer version)
  Form_a_FunctionSpace_1(boost::shared_ptr<const dolfin::Restriction> restriction):
    dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()),
                          boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson1d_finite_element_0()))),
                          boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dofmap>(new poisson1d_dofmap_0()),
                                                                                     restriction)))
  {
    // Do nothing
  }

  // Copy constructor
  ~Form_a_FunctionSpace_1()
  {
  }

};

class Form_a: public dolfin::Form
{
public:

  // Constructor
  Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0):
    dolfin::Form(2, 0)
  {
    _function_spaces[0] = reference_to_no_delete_pointer(V0);
    _function_spaces[1] = reference_to_no_delete_pointer(V1);

    _ufc_form = boost::shared_ptr<const ufc::form>(new poisson1d_form_0());
  }

  // Constructor
  Form_a(boost::shared_ptr<const dolfin::FunctionSpace> V1, boost::shared_ptr<const dolfin::FunctionSpace> V0):
    dolfin::Form(2, 0)
  {
    _function_spaces[0] = V0;
    _function_spaces[1] = V1;

    _ufc_form = boost::shared_ptr<const ufc::form>(new poisson1d_form_0());
  }

  // Destructor
  ~Form_a()
  {}

  /// Return the number of the coefficient with this name
  virtual std::size_t coefficient_number(const std::string& name) const
  {

    dolfin::dolfin_error("generated code for class Form",
                         "access coefficient data",
                         "There are no coefficients");
    return 0;
  }

  /// Return the name of the coefficient with this number
  virtual std::string coefficient_name(std::size_t i) const
  {

    dolfin::dolfin_error("generated code for class Form",
                         "access coefficient data",
                         "There are no coefficients");
    return "unnamed";
  }

  // Typedefs
  typedef Form_a_FunctionSpace_0 TestSpace;
  typedef Form_a_FunctionSpace_1 TrialSpace;

  // Coefficients
};

// Class typedefs
typedef Form_a BilinearForm;
typedef Form_a JacobianForm;
typedef Form_a::TestSpace FunctionSpace;

}

#endif