This file is indexed.

/usr/include/dolfin/geometry/BoundingBoxTree.h is in libdolfin1.3-dev 1.3.0+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
// Copyright (C) 2013 Anders Logg
//
// This file is part of DOLFIN.
//
// DOLFIN is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// DOLFIN is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
//
// First added:  2013-04-09
// Last changed: 2013-09-02

#ifndef __BOUNDING_BOX_TREE_H
#define __BOUNDING_BOX_TREE_H

#include <limits>
#include <vector>
#include <boost/scoped_ptr.hpp>
#include <boost/shared_ptr.hpp>

namespace dolfin
{

  // Forward declarations
  class Point;
  class GenericBoundingBoxTree;
  class Mesh;

  /// This class implements a (distributed) axis aligned bounding box
  /// tree (AABB tree). Bounding box trees can be created from meshes
  /// and [other data structures, to be filled in].

  class BoundingBoxTree
  {
  public:

    /// Create empty bounding box tree
    BoundingBoxTree();

    /// Destructor
    ~BoundingBoxTree();

    /// Build bounding box tree for cells of mesh.
    ///
    /// *Arguments*
    ///     mesh (_Mesh_)
    ///         The mesh for which to compute the bounding box tree.
    void build(const Mesh& mesh);

    /// Build bounding box tree for mesh entities of given dimension.
    ///
    /// *Arguments*
    ///     mesh (_Mesh_)
    ///         The mesh for which to compute the bounding box tree.
    ///     dimension (std::size_t)
    ///         The entity dimension (topological dimension) for which
    ///         to compute the bounding box tree.
    void build(const Mesh& mesh, std::size_t tdim);

    /// Build bounding box tree for point cloud.
    ///
    /// *Arguments*
    ///     points (std::vector<_Point_>)
    ///         The list of points.
    ///     gdim (std::size_t)
    ///         The geometric dimension.
    void build(const std::vector<Point>& points, std::size_t gdim);

    /// Compute all collisions between bounding boxes and _Point_.
    ///
    /// *Returns*
    ///     std::vector<unsigned int>
    ///         A list of local indices for entities contained in
    ///         (leaf) bounding boxes that collide with (intersect)
    ///         the given point.
    ///
    /// *Arguments*
    ///     point (_Point_)
    ///         The point.
    std::vector<unsigned int>
    compute_collisions(const Point& point) const;

    /// Compute all collisions between bounding boxes and _BoundingBoxTree_.
    ///
    /// *Returns* std::pair<std::vector<unsigned int>, std::vector<unsigned int> >
    ///     Two lists of local indices for entities contained in
    ///     (leaf) bounding boxes that collide with (intersect) the
    ///     given bounding box tree. The first list contains entity
    ///     indices for the first tree (this tree) and the second
    ///     contains entity indices for the second tree (the input
    ///     argument).
    ///
    /// *Arguments*
    ///     tree (_BoundingBoxTree_)
    ///         The bounding box tree.
    std::pair<std::vector<unsigned int>, std::vector<unsigned int> >
    compute_collisions(const BoundingBoxTree& tree) const;

    /// Compute all collisions between entities and _Point_.
    ///
    /// *Returns*
    ///     std::vector<unsigned int>
    ///         A list of local indices for entities that collide with
    ///         (intersect) the given point.
    ///
    /// *Arguments*
    ///     point (_Point_)
    ///         The point.
    std::vector<unsigned int>
    compute_entity_collisions(const Point& point) const;

    /// Compute all collisions between entities and _BoundingBoxTree_.
    ///
    /// *Returns*
    ///     std::pair<std::vector<unsigned int>, std::vector<unsigned int> >
    ///         A list of local indices for entities that collide with
    ///         (intersect) the given bounding box tree. The first
    ///         list contains entity indices for the first tree (this
    ///         tree) and the second contains entity indices for the
    ///         second tree (the input argument).
    ///
    /// *Arguments*
    ///     tree (_BoundingBoxTree_)
    ///         The bounding box tree.
    std::pair<std::vector<unsigned int>, std::vector<unsigned int> >
    compute_entity_collisions(const BoundingBoxTree& tree) const;

    /// Compute first collision between bounding boxes and _Point_.
    ///
    /// *Returns*
    ///     unsigned int
    ///         The local index for the first found entity contained
    ///         in a (leaf) bounding box that collides with
    ///         (intersects) the given point. If not found,
    ///         std::numeric_limits<unsigned int>::max() is returned.
    ///
    /// *Arguments*
    ///     point (_Point_)
    ///         The point.
    unsigned int
    compute_first_collision(const Point& point) const;

    /// Compute first collision between entities and _Point_.
    ///
    /// *Returns*
    ///     unsigned int
    ///         The local index for the first found entity that
    ///         collides with (intersects) the given point. If not
    ///         found, std::numeric_limits<unsigned int>::max() is
    ///         returned.
    ///
    /// *Arguments*
    ///     point (_Point_)
    ///         The point.
    unsigned int
    compute_first_entity_collision(const Point& point) const;

    /// Compute closest entity to _Point_.
    ///
    /// *Returns*
    ///     unsigned int
    ///         The local index for the entity that is closest to the
    ///         point. If more than one entity is at the same distance
    ///         (or point contained in entity), then the first entity
    ///         is returned.
    ///     double
    ///         The distance to the closest entity.
    ///
    /// *Arguments*
    ///     point (_Point_)
    ///         The point.
    std::pair<unsigned int, double>
    compute_closest_entity(const Point& point) const;

    /// Compute closest point to _Point_. This function assumes
    /// that the tree has been built for a point cloud.
    ///
    /// Developer note: This function should not be confused with
    /// computing the closest point in all entities of a mesh. That
    /// function could be added with relative ease since we actually
    /// compute the closest points to get the distance in the above
    /// function (compute_closest_entity) inside the specialized
    /// implementations in TetrahedronCell.cpp etc.
    ///
    /// *Returns*
    ///     unsigned int
    ///         The local index for the point that is closest to the
    ///         point. If more than one point is at the same distance
    ///         (or point contained in entity), then the first point
    ///         is returned.
    ///     double
    ///         The distance to the closest point.
    ///
    /// *Arguments*
    ///     point (_Point_)
    ///         The point.
    std::pair<unsigned int, double>
    compute_closest_point(const Point& point) const;

  private:

    // Check that tree has been built
    void check_built() const;

    // Dimension-dependent implementation
    boost::scoped_ptr<GenericBoundingBoxTree> _tree;

    // Pointer to the mesh. We all know that we don't really want
    // to store a pointer to the mesh here, but without it we will
    // be forced to make calls like
    // tree_A.compute_entity_intersections(tree_B, mesh_A, mesh_B).
    const Mesh* _mesh;

  };

}

#endif