This file is indexed.

/usr/include/dolfin/la/uBLASKrylovSolver.h is in libdolfin1.3-dev 1.3.0+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
// Copyright (C) 2006-2009 Garth N. Wells
//
// This file is part of DOLFIN.
//
// DOLFIN is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// DOLFIN is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
//
// Modified by Anders Logg 2006-2012
//
// First added:  2006-05-31
// Last changed: 2012-08-20

#ifndef __UBLAS_KRYLOV_SOLVER_H
#define __UBLAS_KRYLOV_SOLVER_H

#include <set>
#include <string>
#include <boost/shared_ptr.hpp>
#include <dolfin/common/types.h>
#include "ublas.h"
#include "GenericLinearSolver.h"
#include "uBLASLinearOperator.h"
#include "uBLASMatrix.h"
#include "uBLASVector.h"
#include "uBLASPreconditioner.h"

namespace dolfin
{

  class GenericLinearOperator;
  class GenericVector;

  /// This class implements Krylov methods for linear systems
  /// of the form Ax = b using uBLAS data types.

  class uBLASKrylovSolver : public GenericLinearSolver
  {
  public:

    /// Create Krylov solver for a particular method and preconditioner
    uBLASKrylovSolver(std::string method="default",
                      std::string preconditioner="default");

    /// Create Krylov solver for a particular uBLASPreconditioner
    uBLASKrylovSolver(uBLASPreconditioner& pc);

    /// Create Krylov solver for a particular method and uBLASPreconditioner
    uBLASKrylovSolver(std::string method,
                      uBLASPreconditioner& pc);

    /// Destructor
    ~uBLASKrylovSolver();

    /// Solve the operator (matrix)
    void set_operator(const boost::shared_ptr<const GenericLinearOperator> A)
    { set_operators(A, A); }

    /// Set operator (matrix) and preconditioner matrix
    void set_operators(const boost::shared_ptr<const GenericLinearOperator> A,
                       const boost::shared_ptr<const GenericLinearOperator> P)
    { _A = A; _P = P; }


    /// Return the operator (matrix)
    const GenericLinearOperator& get_operator() const
    {
      if (!_A)
      {
        dolfin_error("uBLASKrylovSolver.cpp",
                     "access operator for uBLAS Krylov solver",
                     "Operator has not been set");
      }
      return *_A;
    }

    /// Solve linear system Ax = b and return number of iterations
    std::size_t solve(GenericVector& x, const GenericVector& b);

    /// Solve linear system Ax = b and return number of iterations
    std::size_t solve(const GenericLinearOperator& A, GenericVector& x,
                      const GenericVector& b);

    /// Return a list of available solver methods
    static std::vector<std::pair<std::string, std::string> > methods();

    /// Return a list of available preconditioners
    static std::vector<std::pair<std::string, std::string> > preconditioners();

    /// Default parameter values
    static Parameters default_parameters();

  private:

    /// Select solver and solve linear system Ax = b and return number of iterations
    template<typename MatA, typename MatP>
    std::size_t solve_krylov(const MatA& A,
                      uBLASVector& x,
                      const uBLASVector& b,
                      const MatP& P);

    /// Solve linear system Ax = b using CG
    template<typename Mat>
    std::size_t solveCG(const Mat& A, uBLASVector& x, const uBLASVector& b,
                 bool& converged) const;

    /// Solve linear system Ax = b using restarted GMRES
    template<typename Mat>
    std::size_t solveGMRES(const Mat& A, uBLASVector& x, const uBLASVector& b,
                        bool& converged) const;

    /// Solve linear system Ax = b using BiCGStab
    template<typename Mat>
    std::size_t solveBiCGStab(const Mat& A, uBLASVector& x, const uBLASVector& b,
                        bool& converged) const;

    /// Select and create named preconditioner
    void select_preconditioner(std::string preconditioner);

    /// Read solver parameters
    void read_parameters();

    /// Krylov method
    std::string _method;

    /// Preconditioner
    boost::shared_ptr<uBLASPreconditioner> _pc;

    /// Solver parameters
    double rtol, atol, div_tol;
    std::size_t max_it, restart;
    bool report;

    /// Operator (the matrix)
    boost::shared_ptr<const GenericLinearOperator> _A;

    /// Matrix used to construct the preconditoner
    boost::shared_ptr<const GenericLinearOperator> _P;

  };
  //---------------------------------------------------------------------------
  // Implementation of template functions
  //---------------------------------------------------------------------------
  template<typename MatA, typename MatP>
  std::size_t uBLASKrylovSolver::solve_krylov(const MatA& A,
                                               uBLASVector& x,
                                               const uBLASVector& b,
                                               const MatP& P)
  {
    // Check dimensions
    std::size_t M = A.size(0);
    std::size_t N = A.size(1);
    if ( N != b.size() )
    {
      dolfin_error("uBLASKrylovSolver.h",
                   "solve linear system using uBLAS Krylov solver",
                   "Non-matching dimensions for linear system");
    }

    // Reinitialise x if necessary
    if (x.size() != b.size())
    {
      x.resize(b.size());
      x.zero();
    }

    // Read parameters if not done
    read_parameters();

    // Write a message
    if (report)
      info("Solving linear system of size %d x %d (uBLAS Krylov solver).", M, N);

    // Initialise preconditioner if necessary
    _pc->init(P);

    // Choose solver and solve
    bool converged = false;
    std::size_t iterations = 0;
    if (_method == "cg")
      iterations = solveCG(A, x, b, converged);
    else if (_method == "gmres")
      iterations = solveGMRES(A, x, b, converged);
    else if (_method == "bicgstab")
      iterations = solveBiCGStab(A, x, b, converged);
    else if (_method == "default")
      iterations = solveBiCGStab(A, x, b, converged);
    else
    {
      dolfin_error("uBLASKrylovSolver.h",
                   "solve linear system using uBLAS Krylov solver",
                   "Requested Krylov method (\"%s\") is unknown", _method.c_str());
    }

    // Check for convergence
    if (!converged)
    {
      bool error_on_nonconvergence = parameters["error_on_nonconvergence"];
      if (error_on_nonconvergence)
      {
        dolfin_error("uBLASKrylovSolver.h",
                     "solve linear system using uBLAS Krylov solver",
                     "Solution failed to converge");
      }
      else
        warning("uBLAS Krylov solver failed to converge.");
    }
    else if (report)
      info("Krylov solver converged in %d iterations.", iterations);

    return iterations;
  }
  //-----------------------------------------------------------------------------
  template<typename Mat>
  std::size_t uBLASKrylovSolver::solveCG(const Mat& A,
                                          uBLASVector& x,
                                          const uBLASVector& b,
                                          bool& converged) const
  {
    warning("Conjugate-gradient method not yet programmed for uBLASKrylovSolver. Using GMRES.");
    return solveGMRES(A, x, b, converged);
  }
  //-----------------------------------------------------------------------------
  template<typename Mat>
  std::size_t uBLASKrylovSolver::solveGMRES(const Mat& A, uBLASVector& x,
                                             const uBLASVector& b,
                                             bool& converged) const
  {
    // Get underlying uBLAS vectors
    ublas_vector& _x = x.vec();
    const ublas_vector& _b = b.vec();

    // Get size of system
    const std::size_t size = A.size(0);

    // Create residual vector
    uBLASVector r(size);
    ublas_vector& _r = r.vec();

    // Create H matrix and h vector
    ublas_matrix_cmajor_tri H(restart, restart);
    ublas_vector _h(restart+1);

    // Create gamma vector
    ublas_vector _gamma(restart+1);

    // Matrix containing v_k as columns.
    ublas_matrix_cmajor V(size, restart+1);

    // w vector
    uBLASVector w(size);
    ublas_vector& _w = w.vec();

    // Givens vectors
    ublas_vector _c(restart), _s(restart);

    // Miscellaneous storage
    double nu, temp1, temp2, r_norm = 0.0, beta0 = 0;

    converged = false;
    std::size_t iteration = 0;
    while (iteration < max_it && !converged)
    {
      // Compute residual r = b -A*x
      //noalias(r) = b;
      //axpy_prod(A, -x, r, false);
      A.mult(x, r);
      _r *= -1.0;
      noalias(_r) += _b;

      // Apply preconditioner (use w for temporary storage)
      _w.assign(_r);
      _pc->solve(r, w);

      // L2 norm of residual (for most recent restart)
      const double beta = norm_2(_r);

     // Save intial residual (from restart 0)
     if(iteration == 0)
       beta0 = beta;

     if(beta < atol)
     {
       converged = true;
       return iteration;
     }

      // Intialise gamma
      _gamma.clear();
      _gamma(0) = beta;

      // Create first column of V
      noalias(column(V, 0)) = _r/beta;

      // Modified Gram-Schmidt procedure
      std::size_t subiteration = 0;
      std::size_t j = 0;
      while (subiteration < restart && iteration < max_it && !converged && r_norm/beta < div_tol)
      {
        // Compute product w = A*V_j (use r for temporary storage)
        //axpy_prod(A, column(V, j), w, true);
        noalias(_r) = column(V, j);
        A.mult(r, w);

        // Apply preconditioner (use r for temporary storage)
        _r.assign(_w);
        _pc->solve(w, r);

        for (std::size_t i=0; i <= j; ++i)
        {
          _h(i)= inner_prod(_w, column(V,i));
          noalias(_w) -= _h(i)*column(V,i);
        }
        _h(j+1) = norm_2(_w);

        // Insert column of V (inserting v_(j+1)
        noalias(column(V,j+1)) = _w/_h(j+1);

        // Apply previous Givens rotations to the "new" column
        // (this could be improved? - use more uBLAS functions.
        //  The below has been taken from old DOLFIN code.)
        for(std::size_t i=0; i<j; ++i)
        {
          temp1 = _h(i);
          temp2 = _h(i+1);
          _h(i)   = _c(i)*temp1 - _s(i)*temp2;
          _h(i+1) = _s(i)*temp1 + _c(i)*temp2 ;
        }

        // Compute new c_i and s_i
        nu = sqrt( _h(j)*_h(j) + _h(j+1)*_h(j+1) );

        // Direct access to c & s below leads to some strange compiler errors
        // when using vector expressions and noalias(). By using "subrange",
        // we are working with vector expressions rather than reals
        //c(j) =  h(j)/nu;
        //s(j) = -h(j+1)/nu;
        subrange(_c, j,j+1) =  subrange(_h, j,j+1)/nu;
        subrange(_s, j,j+1) = -subrange(_h, j+1,j+2)/nu;

        // Apply new rotation to last column
        _h(j)   = _c(j)*_h(j) - _s(j)*_h(j+1);
        _h(j+1) = 0.0;

        // Apply rotations to gamma
        temp1 = _c(j)*_gamma(j) - _s(j)*_gamma(j+1);
        _gamma(j+1) = _s(j)*_gamma(j) + _c(j)*_gamma(j+1);
        _gamma(j) = temp1;
        r_norm = fabs(_gamma(j+1));

        // Add h to H matrix. Would ne nice to use
        //   noalias(column(H, j)) = subrange(h, 0, restart);
        // but this gives an error when uBLAS debugging is turned onand H
        // is a triangular matrix
        for(std::size_t i=0; i<j+1; ++i)
          H(i,j) = _h(i);

        // Check for convergence
        if( r_norm/beta0 < rtol || r_norm < atol )
          converged = true;

        ++iteration;
        ++subiteration;
        ++j;
      }

      // Eliminate extra rows and columns (this does not resize or copy, just addresses a range)
      ublas_matrix_cmajor_tri_range Htrunc(H, ublas::range(0,subiteration), ublas::range(0,subiteration) );
      ublas_vector_range _g(_gamma, ublas::range(0,subiteration));

      // Solve triangular system H*g and return result in g
      ublas::inplace_solve(Htrunc, _g, ublas::upper_tag ());

      // x_m = x_0 + V*y
      ublas_matrix_cmajor_range _v( V, ublas::range(0,V.size1()), ublas::range(0,subiteration) );
      axpy_prod(_v, _g, _x, false);
    }
    return iteration;
  }
  //-----------------------------------------------------------------------------
  template<typename Mat>
  std::size_t uBLASKrylovSolver::solveBiCGStab(const Mat& A,
                                                uBLASVector& x,
                                                const uBLASVector& b,
                                                bool& converged) const
  {
    // Get uderlying uBLAS vectors
    ublas_vector& _x = x.vec();
    const ublas_vector& _b = b.vec();

   // Get size of system
    const std::size_t size = A.size(0);

    // Allocate vectors
    uBLASVector r(size), rstar(size), p(size), s(size), v(size), t(size), y(size), z(size);
    ublas_vector& _r = r.vec();
    ublas_vector& _rstar = rstar.vec();
    ublas_vector& _p = p.vec();
    ublas_vector& _s = s.vec();
    ublas_vector& _v = v.vec();
    ublas_vector& _t = t.vec();
    ublas_vector& _y = y.vec();
    ublas_vector& _z = z.vec();

    double alpha = 1.0, beta = 0.0, omega = 1.0, r_norm = 0.0;
    double rho_old = 1.0, rho = 1.0;

    // Compute residual r = b -A*x
    //r.assign(b);
    //axpy_prod(A, -x, r, false);
    A.mult(x, r);
    r *= -1.0;
    noalias(_r) += _b;

    const double r0_norm = norm_2(_r);
    if( r0_norm < atol )
    {
      converged = true;
      return 0;
    }

    // Initialise r^star, v and p
    _rstar.assign(_r);
    _v.clear();
    _p.clear();

    // Apply preconditioner to r^start. This is a trick to avoid problems in which
    // (r^start, r) = 0  after the first iteration (such as PDE's with homogeneous
    // Neumann bc's and no forcing/source term.
    _pc->solve(rstar, r);

    // Right-preconditioned Bi-CGSTAB

    // Start iterations
    converged = false;
    std::size_t iteration = 0;
    while (iteration < max_it && !converged && r_norm/r0_norm < div_tol)
    {
      // Set rho_n = rho_n+1
      rho_old = rho;

      // Compute new rho
      rho = ublas::inner_prod(_r, _rstar);
      if( fabs(rho) < 1e-25 )
      {
        dolfin_error("uBLASKrylovSolver.h",
                     "solve linear system using uBLAS BiCGStab solver",
                     "Solution failed to converge, rho = %g", rho);
      }

      beta = (rho/rho_old)*(alpha/omega);

      // p = r1 + beta*p - beta*omega*A*p
      p *= beta;
      noalias(_p) += _r - beta*omega*_v;

      // My = p
      _pc->solve(y, p);

      // v = A*y
      //axpy_prod(A, y, v, true);
      A.mult(y, v);

      // alpha = (r, rstart) / (v, rstar)
      alpha = rho/ublas::inner_prod(_v, _rstar);

      // s = r - alpha*v
      noalias(_s) = _r - alpha*_v;

      // Mz = s
      _pc->solve(z, s);

      // t = A*z
      //axpy_prod(A, z, t, true);
      A.mult(z, t);

      // omega = (t, s) / (t,t)
      omega = ublas::inner_prod(_t, _s)/ublas::inner_prod(_t, _t);

      // x = x + alpha*p + omega*s
      noalias(_x) += alpha*_y + omega*_z;

      // r = s - omega*t
      noalias(_r) = _s - omega*_t;

      // Compute norm of the residual and check for convergence
      r_norm = norm_2(_r);
      if( r_norm/r0_norm < rtol || r_norm < atol)
        converged = true;

      ++iteration;
    }

    return iteration;
  }
  //-----------------------------------------------------------------------------
}

#endif