This file is indexed.

/usr/include/eclib/rat.h is in libec-dev 2013-01-01-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
// rat.h: declaration of rational number class
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
// 
// This file is part of the mwrank package.
// 
// mwrank is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
// 
// mwrank is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// 
// You should have received a copy of the GNU General Public License
// along with mwrank; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
// 
//////////////////////////////////////////////////////////////////////////
 
#if     !defined(_RATIONAL_H)
#define _RATIONAL_H      1       //flags that this file has been included

#include "arith.h"

class rational {
  friend class bigrational;
public:
        // constructors
        rational(long num_val=0, long den_val=1);
        rational(const rational& q);
        void operator=(const rational& q);

        // rational manipulations
        void cancel();                           // cancel *this in situ
        friend long num(const rational&);        // the numerator
        friend long den(const rational&);        // the denominator
        friend rational recip(const rational&);  // reciprocal
        friend long round(const rational&);      // nearest integer

        // Binary Operator Functions
        friend rational operator+(const rational&, const rational&);
        friend rational operator+(long, const rational&);
        friend rational operator+(const rational&, long);
        friend rational operator-(const rational&, const rational&);
        friend rational operator-(long, const rational&);
        friend rational operator-(const rational&, long);
        friend rational operator*(const rational&, const rational&);
        friend rational operator*(const rational&, long);
        friend rational operator*(long, const rational&);
        friend rational operator/(const rational&, const rational&);
        friend rational operator/(const rational&, long);
        friend rational operator/(long, const rational&);
        friend int operator==(const rational&, const rational&);
        friend int operator!=(const rational&, const rational&);
        friend ostream& operator<< (ostream&s, const rational&);
        friend istream& operator>> (istream& is, rational& r);
        rational& operator+=(const rational&);
        rational& operator+=(long);
        rational& operator-=(const rational&);
        rational& operator-=(long);
        rational& operator*=(const rational&);
        rational& operator*=(long);
        rational& operator/=(const rational&);
        rational& operator/=(long);
        rational operator+() const;
        rational operator-() const;
        friend long floor(const rational& r);
        friend long ceil(const rational& r);
        operator double();  // conversion operator
        operator bigfloat();  // conversion operator

// Implementation
private:
        long n, d;
};


// Inline rational functions

inline void rational::cancel()                     // cancel *this in situ
{
 long g = ::gcd(n,d);
 if (g>1) {n/=g; d/=g;}
 if (d<0) {n=-n; d=-d;}
}

inline rational::rational(long num_val, long den_val)
{
  n=num_val; d=den_val;
  (*this).cancel(); 
}

inline rational::rational(const rational& q) :n(q.n), d(q.d) {;}
inline void rational::operator=(const rational& q) {n=q.n; d=q.d;}

inline rational rational::operator+() const
{
        return *this;
}

inline rational rational::operator-() const
{
        return rational(-n, d);
}


// Definitions of compound-assignment operator member functions

inline rational& rational::operator+=(const rational& q2)
{
        n = n*q2.d+d*q2.n;
        d *= q2.d;
        (*this).cancel();
        return *this;
}

inline rational& rational::operator+=(long num_val2)
{
        n += d*num_val2;
        return *this;
}

inline rational& rational::operator-=(const rational& q2)
{
        n = n*q2.d-d*q2.n;
        d *= q2.d;
        (*this).cancel();
        return *this;
}

inline rational& rational::operator-=(long num_val2)
{
        n -= d*num_val2;
        return *this;
}

inline rational& rational::operator*=(long num_val2)
{
        n*=num_val2;
        (*this).cancel();
        return *this;
}

inline rational& rational::operator/=(long num_val2)
{
        d*=num_val2;
        (*this).cancel();
        return *this;
}

inline rational::operator double() {return double(n)/double(d);}
inline rational::operator bigfloat() {return to_bigfloat(n)/to_bigfloat(d);}

// Definitions of non-member rational functions

inline long num(const rational& q)
{
        return q.n;
}

inline long den(const rational& q)
{
        return q.d;
}

inline rational recip(const rational& q)
{
        return rational(q.d, q.n);
}

inline long round(const rational& q)
{
        return q.n / q.d;    //provisional -- should fix rounding direction.
}

// Definitions of non-member binary operator functions

inline rational operator+(const rational& q1, const rational& q2)
{
        return rational(q1.n*q2.d + q2.n*q1.d, q1.d * q2.d);
}

inline rational operator+(long num_val1, const rational& q2)
{
        return rational(num_val1*q2.d + q2.n, q2.d);
}

inline rational operator+(const rational& q1, long num_val2)
{
        return rational(q1.n + num_val2*q1.d, q1.d);
}

inline rational operator-(const rational& q1, const rational& q2)
{
        return rational(q1.n*q2.d - q2.n*q1.d, q1.d * q2.d);
}

inline rational operator-(long num_val1, const rational& q2)
{
        return rational(num_val1*q2.d - q2.n, q2.d);
}

inline rational operator-(const rational& q1, long num_val2)
{
        return rational(q1.n - num_val2*q1.d, q1.d);
}

inline rational operator*(const rational& q1, long num_val2)
{
        return rational(q1.n*num_val2, q1.d);
}

inline rational operator*(long num_val1, const rational& q2)
{
        return rational(q2.n*num_val1, q2.d);
}

inline rational operator*(const rational& q1, const rational& q2)
{
        return rational(q1.n*q2.n, q1.d*q2.d);
}

inline rational operator/(const rational& q1, long num_val2)
{
        return rational(q1.n, q1.d*num_val2);
}

inline rational operator/(const rational& q1, const rational& q2)
{
        return rational(q1.n*q2.d, q1.d*q2.n);
}

inline rational operator/(long num_val1, const rational& q2)
{
  return rational(q2.d*num_val1, q2.n);
}

inline int operator==(const rational& q1, const rational& q2)
{
        return q1.n*q2.d == q2.n*q1.d;
}

inline int operator!=(const rational& q1, const rational& q2)
{
        return q1.n*q2.d != q2.n*q1.d;
}

inline ostream& operator<<(ostream& s, const rational& q)
{
  if(q.d==0) s<<"oo";
  else
    {
      s << q.n;
      if (q.d!=1) {s << "/" << q.d;}
    }
   return s;
}

inline istream& operator>> (istream& is, rational& r)
{
  char c;
  long n,d=1;
  is>>n;
  if(!is.eof()) 
    {
      is.get(c);
      if(c=='/')
	{
	  is>>d;
	}
      else
	{
	  is.putback(c);
	}
    }
  r=rational(n,d);
  return is;
}

// NB gcd(n,d)=1 and d>0:

inline long floor(const rational& r)
{
  return (r.n-(r.n%r.d))/r.d;
}

inline long ceil(const rational& r)
{
  if(r.d==1) return r.n;
  return 1 + (r.n-(r.n%r.d))/r.d;
}

#endif