/usr/include/freefoam/coalCombustion/COxidationMurphyShaddix.C is in libfreefoam-dev 0.1.0+dfsg-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | /*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2008-2010 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "COxidationMurphyShaddix.H"
#include <OpenFOAM/mathematicalConstants.H>
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
template<class CloudType>
Foam::label Foam::COxidationMurphyShaddix<CloudType>::maxIters_ = 1000;
template<class CloudType>
Foam::scalar Foam::COxidationMurphyShaddix<CloudType>::tolerance_ = 1e-06;
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
template<class CloudType>
Foam::COxidationMurphyShaddix<CloudType>::COxidationMurphyShaddix
(
const dictionary& dict,
CloudType& owner
)
:
SurfaceReactionModel<CloudType>
(
dict,
owner,
typeName
),
D0_(dimensionedScalar(this->coeffDict().lookup("D0")).value()),
rho0_(dimensionedScalar(this->coeffDict().lookup("rho0")).value()),
T0_(dimensionedScalar(this->coeffDict().lookup("T0")).value()),
Dn_(dimensionedScalar(this->coeffDict().lookup("Dn")).value()),
A_(dimensionedScalar(this->coeffDict().lookup("A")).value()),
E_(dimensionedScalar(this->coeffDict().lookup("E")).value()),
n_(dimensionedScalar(this->coeffDict().lookup("n")).value()),
WVol_(dimensionedScalar(this->coeffDict().lookup("WVol")).value()),
CsLocalId_(-1),
O2GlobalId_(owner.composition().globalCarrierId("O2")),
CO2GlobalId_(owner.composition().globalCarrierId("CO2")),
WC_(0.0),
WO2_(0.0)
{
// Determine Cs ids
label idSolid = owner.composition().idSolid();
CsLocalId_ = owner.composition().localId(idSolid, "C");
// Set local copies of thermo properties
WO2_ = owner.mcCarrierThermo().speciesData()[O2GlobalId_].W();
scalar WCO2 = owner.mcCarrierThermo().speciesData()[CO2GlobalId_].W();
WC_ = WCO2 - WO2_;
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
template<class CloudType>
Foam::COxidationMurphyShaddix<CloudType>::~COxidationMurphyShaddix()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template<class CloudType>
bool Foam::COxidationMurphyShaddix<CloudType>::active() const
{
return true;
}
template<class CloudType>
Foam::scalar Foam::COxidationMurphyShaddix<CloudType>::calculate
(
const scalar dt,
const label cellI,
const scalar d,
const scalar T,
const scalar Tc,
const scalar pc,
const scalar rhoc,
const scalar mass,
const scalarField& YGas,
const scalarField& YLiquid,
const scalarField& YSolid,
const scalarField& YMixture,
const scalar N,
scalarField& dMassGas,
scalarField& dMassLiquid,
scalarField& dMassSolid,
scalarField& dMassSRCarrier
) const
{
// Fraction of remaining combustible material
const label idSolid = CloudType::parcelType::SLD;
const scalar fComb = YMixture[idSolid]*YSolid[CsLocalId_];
// Surface combustion until combustible fraction is consumed
if (fComb < SMALL)
{
return 0.0;
}
// Cell carrier phase O2 species density [kg/m^3]
const scalar rhoO2 =
rhoc*this->owner().mcCarrierThermo().Y(O2GlobalId_)[cellI];
if (rhoO2 < SMALL)
{
return 0.0;
}
// Particle surface area [m^2]
const scalar Ap = mathematicalConstant::pi*sqr(d);
// Calculate diffision constant at continuous phase temperature
// and density [m^2/s]
const scalar D = D0_*(rho0_/rhoc)*pow(Tc/T0_, Dn_);
// Far field partial pressure O2 [Pa]
const scalar ppO2 = rhoO2/WO2_*specie::RR*Tc;
// Total molar concentration of the carrier phase [kmol/m^3]
const scalar C = pc/(specie::RR*Tc);
if (debug)
{
Pout<< "mass = " << mass << nl
<< "fComb = " << fComb << nl
<< "Ap = " << Ap << nl
<< "dt = " << dt << nl
<< "C = " << C << nl
<< endl;
}
// Molar reaction rate per unit surface area [kmol/(m^2.s)]
scalar qCsOld = 0;
scalar qCs = 1;
const scalar qCsLim = mass*fComb/(WC_*Ap*dt);
if (debug)
{
Pout << "qCsLim = " << qCsLim << endl;
}
label iter = 0;
while ((mag(qCs - qCsOld)/qCs > tolerance_) && (iter <= maxIters_))
{
qCsOld = qCs;
const scalar PO2Surface = ppO2*exp(-(qCs + N)*d/(2*C*D));
qCs = A_*exp(-E_/(specie::RR*T))*pow(PO2Surface, n_);
qCs = (100.0*qCs + iter*qCsOld)/(100.0 + iter);
qCs = min(qCs, qCsLim);
if (debug)
{
Pout<< "iter = " << iter
<< ", qCsOld = " << qCsOld
<< ", qCs = " << qCs
<< nl << endl;
}
iter++;
}
if (iter > maxIters_)
{
WarningIn
(
"scalar Foam::COxidationMurphyShaddix<CloudType>::calculate(...)"
) << "iter limit reached (" << maxIters_ << ")" << nl << endl;
}
// Calculate the number of molar units reacted
scalar dOmega = qCs*Ap*dt;
// Add to carrier phase mass transfer
dMassSRCarrier[O2GlobalId_] += -dOmega*WO2_;
dMassSRCarrier[CO2GlobalId_] += dOmega*(WC_ + WO2_);
// Add to particle mass transfer
dMassSolid[CsLocalId_] += dOmega*WC_;
const scalar HC =
this->owner().composition().solids().properties()[CsLocalId_].Hf()
+ this->owner().composition().solids().properties()[CsLocalId_].cp()*T;
const scalar HCO2 =
this->owner().mcCarrierThermo().speciesData()[CO2GlobalId_].H(T);
const scalar HO2 =
this->owner().mcCarrierThermo().speciesData()[O2GlobalId_].H(T);
// Heat of reaction
return dOmega*(WC_*HC + WO2_*HO2 - (WC_ + WO2_)*HCO2);
}
// ************************ vim: set sw=4 sts=4 et: ************************ //
|