/usr/include/freefoam/dsmc/FreeStream.C is in libfreefoam-dev 0.1.0+dfsg-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 | /*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2009-2010 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "FreeStream.H"
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
template <class CloudType>
Foam::FreeStream<CloudType>::FreeStream
(
const dictionary& dict,
CloudType& cloud
)
:
InflowBoundaryModel<CloudType>(dict, cloud, typeName),
patches_(),
moleculeTypeIds_(),
numberDensities_(),
particleFluxAccumulators_()
{
// Identify which patches to use
DynamicList<label> patches;
forAll(cloud.mesh().boundaryMesh(), p)
{
const polyPatch& patch = cloud.mesh().boundaryMesh()[p];
if (isType<polyPatch>(patch))
{
patches.append(p);
}
}
patches_.transfer(patches);
const dictionary& numberDensitiesDict
(
this->coeffDict().subDict("numberDensities")
);
List<word> molecules(numberDensitiesDict.toc());
// Initialise the particleFluxAccumulators_
particleFluxAccumulators_.setSize(patches_.size());
forAll(patches_, p)
{
const polyPatch& patch = cloud.mesh().boundaryMesh()[patches_[p]];
particleFluxAccumulators_[p] = List<Field<scalar> >
(
molecules.size(),
Field<scalar>(patch.size(), 0.0)
);
}
moleculeTypeIds_.setSize(molecules.size());
numberDensities_.setSize(molecules.size());
forAll(molecules, i)
{
numberDensities_[i] = readScalar
(
numberDensitiesDict.lookup(molecules[i])
);
moleculeTypeIds_[i] = findIndex(cloud.typeIdList(), molecules[i]);
if (moleculeTypeIds_[i] == -1)
{
FatalErrorIn
(
"Foam::FreeStream<CloudType>::FreeStream"
"("
"const dictionary&, "
"CloudType&"
")"
) << "typeId " << molecules[i] << "not defined in cloud." << nl
<< abort(FatalError);
}
}
numberDensities_ /= cloud.nParticle();
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
template <class CloudType>
Foam::FreeStream<CloudType>::~FreeStream()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template <class CloudType>
void Foam::FreeStream<CloudType>::inflow()
{
CloudType& cloud(this->owner());
const polyMesh& mesh(cloud.mesh());
const scalar deltaT = mesh.time().deltaTValue();
Random& rndGen(cloud.rndGen());
scalar sqrtPi = sqrt(mathematicalConstant::pi);
label particlesInserted = 0;
const volScalarField::GeometricBoundaryField& boundaryT
(
cloud.boundaryT().boundaryField()
);
const volVectorField::GeometricBoundaryField& boundaryU
(
cloud.boundaryU().boundaryField()
);
forAll(patches_, p)
{
label patchI = patches_[p];
const polyPatch& patch = mesh.boundaryMesh()[patchI];
// Add mass to the accumulators. negative face area dotted with the
// velocity to point flux into the domain.
// Take a reference to the particleFluxAccumulator for this patch
List<Field<scalar> >& pFA = particleFluxAccumulators_[p];
forAll(pFA, i)
{
label typeId = moleculeTypeIds_[i];
scalar mass = cloud.constProps(typeId).mass();
if (min(boundaryT[patchI]) < SMALL)
{
FatalErrorIn ("Foam::FreeStream<CloudType>::inflow()")
<< "Zero boundary temperature detected, "
<< "check boundaryT condition." << nl
<< nl << abort(FatalError);
}
scalarField mostProbableSpeed
(
cloud.maxwellianMostProbableSpeed
(
boundaryT[patchI],
mass
)
);
// Dotting boundary velocity with the face unit normal (which points
// out of the domain, so it must be negated), dividing by the most
// probable speed to form molecularSpeedRatio * cosTheta
scalarField sCosTheta =
boundaryU[patchI]
& -patch.faceAreas()/mag(patch.faceAreas())
/mostProbableSpeed;
// From Bird eqn 4.22
pFA[i] +=
mag(patch.faceAreas())*numberDensities_[i]*deltaT
*mostProbableSpeed
*(
exp(-sqr(sCosTheta)) + sqrtPi*sCosTheta*(1 + erf(sCosTheta))
)
/(2.0*sqrtPi);
}
forAll(patch, f)
{
// Loop over all faces as the outer loop to avoid calculating
// geometrical properties multiple times.
labelList faceVertices = patch[f];
label nVertices = faceVertices.size();
label globalFaceIndex = f + patch.start();
label cell = mesh.faceOwner()[globalFaceIndex];
const vector& fC = patch.faceCentres()[f];
scalar fA = mag(patch.faceAreas()[f]);
// Cumulative triangle area fractions
List<scalar> cTriAFracs(nVertices);
cTriAFracs[0] = 0.0;
for (label v = 0; v < nVertices - 1; v++)
{
const point& vA = mesh.points()[faceVertices[v]];
const point& vB = mesh.points()[faceVertices[(v + 1)]];
cTriAFracs[v] =
0.5*mag((vA - fC)^(vB - fC))/fA
+ cTriAFracs[max((v - 1), 0)];
}
// Force the last area fraction value to 1.0 to avoid any
// rounding/non-flat face errors giving a value < 1.0
cTriAFracs[nVertices - 1] = 1.0;
// Normal unit vector *negative* so normal is pointing into the
// domain
vector n = patch.faceAreas()[f];
n /= -mag(n);
// Wall tangential unit vector. Use the direction between the
// face centre and the first vertex in the list
vector t1 = fC - (mesh.points()[faceVertices[0]]);
t1 /= mag(t1);
// Other tangential unit vector. Rescaling in case face is not
// flat and n and t1 aren't perfectly orthogonal
vector t2 = n^t1;
t2 /= mag(t2);
scalar faceTemperature = boundaryT[patchI][f];
const vector& faceVelocity = boundaryU[patchI][f];
forAll(pFA, i)
{
scalar& faceAccumulator = pFA[i][f];
// Number of whole particles to insert
label nI = max(label(faceAccumulator), 0);
// Add another particle with a probability proportional to the
// remainder of taking the integer part of faceAccumulator
if ((faceAccumulator - nI) > rndGen.scalar01())
{
nI++;
}
faceAccumulator -= nI;
label typeId = moleculeTypeIds_[i];
scalar mass = cloud.constProps(typeId).mass();
for (label i = 0; i < nI; i++)
{
// Choose a triangle to insert on, based on their relative
// area
scalar triSelection = rndGen.scalar01();
// Selected triangle
label sTri = -1;
forAll(cTriAFracs, tri)
{
sTri = tri;
if (cTriAFracs[tri] >= triSelection)
{
break;
}
}
// Randomly distribute the points on the triangle, using the
// method from:
// Generating Random Points in Triangles
// by Greg Turk
// from "Graphics Gems", Academic Press, 1990
// http://tog.acm.org/GraphicsGems/gems/TriPoints.c
const point& A = fC;
const point& B = mesh.points()[faceVertices[sTri]];
const point& C =
mesh.points()[faceVertices[(sTri + 1) % nVertices]];
scalar s = rndGen.scalar01();
scalar t = sqrt(rndGen.scalar01());
point p = (1 - t)*A + (1 - s)*t*B + s*t*C;
// Velocity generation
scalar mostProbableSpeed
(
cloud.maxwellianMostProbableSpeed
(
faceTemperature,
mass
)
);
scalar sCosTheta = (faceVelocity & n)/mostProbableSpeed;
// Coefficients required for Bird eqn 12.5
scalar uNormProbCoeffA =
sCosTheta + sqrt(sqr(sCosTheta) + 2.0);
scalar uNormProbCoeffB =
0.5*
(
1.0
+ sCosTheta*(sCosTheta - sqrt(sqr(sCosTheta) + 2.0))
);
// Equivalent to the QA value in Bird's DSMC3.FOR
scalar randomScaling = 3.0;
if (sCosTheta < -3)
{
randomScaling = mag(sCosTheta) + 1;
}
scalar P = -1;
// Normalised candidates for the normal direction velocity
// component
scalar uNormal;
scalar uNormalThermal;
// Select a velocity using Bird eqn 12.5
do
{
uNormalThermal =
randomScaling*(2.0*rndGen.scalar01() - 1);
uNormal = uNormalThermal + sCosTheta;
if (uNormal < 0.0)
{
P = -1;
}
else
{
P = 2.0*uNormal/uNormProbCoeffA
*exp(uNormProbCoeffB - sqr(uNormalThermal));
}
} while (P < rndGen.scalar01());
vector U =
sqrt(CloudType::kb*faceTemperature/mass)
*(
rndGen.GaussNormal()*t1
+ rndGen.GaussNormal()*t2
)
+ (t1 & faceVelocity)*t1
+ (t2 & faceVelocity)*t2
+ mostProbableSpeed*uNormal*n;
scalar Ei = cloud.equipartitionInternalEnergy
(
faceTemperature,
cloud.constProps(typeId).internalDegreesOfFreedom()
);
cloud.addNewParcel
(
p,
U,
Ei,
cell,
typeId
);
particlesInserted++;
}
}
}
}
reduce(particlesInserted, sumOp<label>());
Info<< " Particles inserted = "
<< particlesInserted << endl;
}
// ************************ vim: set sw=4 sts=4 et: ************************ //
|