/usr/include/freefoam/finiteVolume/fvMatrixSolve.C is in libfreefoam-dev 0.1.0+dfsg-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | /*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2011 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template<class Type>
void Foam::fvMatrix<Type>::setComponentReference
(
const label patchi,
const label facei,
const direction cmpt,
const scalar value
)
{
if (psi_.needReference())
{
if (Pstream::master())
{
internalCoeffs_[patchi][facei].component(cmpt) +=
diag()[psi_.mesh().boundary()[patchi].faceCells()[facei]];
boundaryCoeffs_[patchi][facei].component(cmpt) +=
diag()[psi_.mesh().boundary()[patchi].faceCells()[facei]]
*value;
}
}
}
template<class Type>
Foam::lduMatrix::solverPerformance Foam::fvMatrix<Type>::solve
(
const dictionary& solverControls
)
{
if (debug)
{
Info<< "fvMatrix<Type>::solve(const dictionary& solverControls) : "
"solving fvMatrix<Type>"
<< endl;
}
lduMatrix::solverPerformance solverPerfVec
(
"fvMatrix<Type>::solve",
psi_.name()
);
scalarField saveDiag = diag();
Field<Type> source = source_;
// At this point include the boundary source from the coupled boundaries.
// This is corrected for the implict part by updateMatrixInterfaces within
// the component loop.
addBoundarySource(source);
typename Type::labelType validComponents
(
pow
(
psi_.mesh().solutionD(),
pTraits<typename powProduct<Vector<label>, Type::rank>::type>::zero
)
);
for(direction cmpt=0; cmpt<Type::nComponents; cmpt++)
{
if (validComponents[cmpt] == -1) continue;
// copy field and source
scalarField psiCmpt = psi_.internalField().component(cmpt);
addBoundaryDiag(diag(), cmpt);
scalarField sourceCmpt = source.component(cmpt);
FieldField<Field, scalar> bouCoeffsCmpt
(
boundaryCoeffs_.component(cmpt)
);
FieldField<Field, scalar> intCoeffsCmpt
(
internalCoeffs_.component(cmpt)
);
lduInterfaceFieldPtrsList interfaces =
psi_.boundaryField().interfaces();
// Use the initMatrixInterfaces and updateMatrixInterfaces to correct
// bouCoeffsCmpt for the explicit part of the coupled boundary
// conditions
initMatrixInterfaces
(
bouCoeffsCmpt,
interfaces,
psiCmpt,
sourceCmpt,
cmpt
);
updateMatrixInterfaces
(
bouCoeffsCmpt,
interfaces,
psiCmpt,
sourceCmpt,
cmpt
);
lduMatrix::solverPerformance solverPerf;
// Solver call
solverPerf = lduMatrix::solver::New
(
psi_.name() + pTraits<Type>::componentNames[cmpt],
*this,
bouCoeffsCmpt,
intCoeffsCmpt,
interfaces,
solverControls
)->solve(psiCmpt, sourceCmpt, cmpt);
solverPerf.print();
if
(
solverPerf.initialResidual() > solverPerfVec.initialResidual()
&& !solverPerf.singular()
)
{
solverPerfVec = solverPerf;
}
psi_.internalField().replace(cmpt, psiCmpt);
diag() = saveDiag;
}
psi_.correctBoundaryConditions();
return solverPerfVec;
}
template<class Type>
Foam::autoPtr<typename Foam::fvMatrix<Type>::fvSolver>
Foam::fvMatrix<Type>::solver()
{
return solver(psi_.mesh().solverDict(psi_.name()));
}
template<class Type>
Foam::lduMatrix::solverPerformance Foam::fvMatrix<Type>::fvSolver::solve()
{
return solve(fvMat_.psi_.mesh().solverDict(fvMat_.psi_.name()));
}
template<class Type>
Foam::lduMatrix::solverPerformance Foam::fvMatrix<Type>::solve()
{
return solve(psi_.mesh().solverDict(psi_.name()));
}
template<class Type>
Foam::tmp<Foam::Field<Type> > Foam::fvMatrix<Type>::residual() const
{
tmp<Field<Type> > tres(source_);
Field<Type>& res = tres();
addBoundarySource(res);
// Loop over field components
for (direction cmpt=0; cmpt<Type::nComponents; cmpt++)
{
scalarField psiCmpt = psi_.internalField().component(cmpt);
scalarField boundaryDiagCmpt(psi_.size(), 0.0);
addBoundaryDiag(boundaryDiagCmpt, cmpt);
FieldField<Field, scalar> bouCoeffsCmpt
(
boundaryCoeffs_.component(cmpt)
);
res.replace
(
cmpt,
lduMatrix::residual
(
psiCmpt,
res.component(cmpt) - boundaryDiagCmpt*psiCmpt,
bouCoeffsCmpt,
psi_.boundaryField().interfaces(),
cmpt
)
);
}
return tres;
}
// ************************ vim: set sw=4 sts=4 et: ************************ //
|