/usr/include/freefoam/incompressibleRASModels/nonLinearWallFunctionsI.H is in libfreefoam-dev 0.1.0+dfsg-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 | /*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Global
nonLinearwallFunctions
Description
Calculate wall generation and dissipation from wall-functions
for non-linear models.
\*---------------------------------------------------------------------------*/
{
labelList cellBoundaryFaceCount(epsilon_.size(), 0);
scalar yPlusLam = this->yPlusLam(kappa_.value(), E_.value());
const fvPatchList& patches = mesh_.boundary();
//- Initialise the near-wall G and epsilon fields to zero
forAll(patches, patchi)
{
const fvPatch& curPatch = patches[patchi];
if (isA<wallFvPatch>(curPatch))
{
forAll(curPatch, facei)
{
label faceCelli = curPatch.faceCells()[facei];
epsilon_[faceCelli] = 0.0;
G[faceCelli] = 0.0;
}
}
}
//- Accumulate the wall face contributions to epsilon and G
// Increment cellBoundaryFaceCount for each face for averaging
forAll(patches, patchi)
{
const fvPatch& curPatch = patches[patchi];
if (isA<wallFvPatch>(curPatch))
{
#include <finiteVolume/checkPatchFieldTypes.H>
const scalarField& nuw = nu().boundaryField()[patchi];
const scalarField& nutw = nut_.boundaryField()[patchi];
scalarField magFaceGradU = mag(U_.boundaryField()[patchi].snGrad());
forAll(curPatch, facei)
{
label faceCelli = curPatch.faceCells()[facei];
//- using local Cmu !
scalar Cmu25 = pow(Cmu_[faceCelli], 0.25);
scalar Cmu75 = pow(Cmu_[faceCelli], 0.75);
scalar yPlus =
Cmu25*y_[patchi][facei]
*sqrt(k_[faceCelli])
/nuw[facei];
// For corner cells (with two boundary or more faces),
// epsilon and G in the near-wall cell are calculated
// as an average
cellBoundaryFaceCount[faceCelli]++;
epsilon_[faceCelli] +=
Cmu75*pow(k_[faceCelli], 1.5)
/(kappa_.value()*y_[patchi][facei]);
if (yPlus > yPlusLam)
{
G[faceCelli] +=
(nutw[facei] + nuw[facei])
*magFaceGradU[facei]
*Cmu25*sqrt(k_[faceCelli])
/(kappa_.value()*y_[patchi][facei])
- (nonlinearStress_[faceCelli] && gradU_[faceCelli]);
}
}
}
}
// Perform the averaging
forAll(patches, patchi)
{
const fvPatch& curPatch = patches[patchi];
if (isA<wallFvPatch>(curPatch))
{
forAll(curPatch, facei)
{
label faceCelli = curPatch.faceCells()[facei];
epsilon_[faceCelli] /= cellBoundaryFaceCount[faceCelli];
G[faceCelli] /= cellBoundaryFaceCount[faceCelli];
}
}
}
}
// ************************ vim: set sw=4 sts=4 et: ************************ //
|