/usr/include/GeographicLib/Accumulator.hpp is in libgeographiclib-dev 1.21-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 | /**
* \file Accumulator.hpp
* \brief Header for GeographicLib::Accumulator class
*
* Copyright (c) Charles Karney (2010, 2011) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* http://geographiclib.sourceforge.net/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_ACCUMULATOR_HPP)
#define GEOGRAPHICLIB_ACCUMULATOR_HPP \
"$Id: 03b7f4fdb9974c822f98d5f5aab1094b5a9ac8f2 $"
#include <GeographicLib/Constants.hpp>
namespace GeographicLib {
/**
* \brief An accumulator for sums.
*
* This allow many numbers of floating point type \e T to be added together
* with twice the normal precision. Thus if \e T is double, the effective
* precision of the sum is 106 bits or about 32 decimal places. The core
* idea is the error free transformation of a sum, D. E. Knuth, TAOCP, Vol 2,
* 4.2.2, Theorem B.
*
* The implementation follows J. R. Shewchuk,
* <a href="http://dx.doi.org/10.1007/PL00009321"> Adaptive Precision
* Floating-Point Arithmetic and Fast Robust Geometric Predicates</a>,
* Discrete & Computational Geometry 18(3) 305-363 (1997).
*
* Approximate timings (summing a vector<double>)
* - double: 2ns
* - Accumulator<double>: 23ns
*
* In the documentation of the member functions, \e sum stands for the value
* currently held in the accumulator.
*
* Example of use:
* \include example-Accumulator.cpp
**********************************************************************/
template<typename T = Math::real>
class GEOGRAPHIC_EXPORT Accumulator {
private:
// _s + _t accumulates for the sum.
T _s, _t;
// Error free transformation of a sum. Note that t can be the same as one
// of the first two arguments.
static inline T sum(T u, T v, T& t) {
volatile T s = u + v;
volatile T up = s - v;
volatile T vpp = s - up;
up -= u;
vpp -= v;
t = -(up + vpp);
// u + v = s + t
// = round(u + v) + t
return s;
}
// Same as sum, but requires abs(u) >= abs(v). This isn't currently used.
static inline T fastsum(T u, T v, T& t) {
volatile T s = u + v;
volatile T vp = s - u;
t = v - vp;
return s;
}
void Add(T y) throw() {
// Here's Shewchuk's solution...
T u; // hold exact sum as [s, t, u]
y = sum(y, _t, u); // Accumulate starting at least significant end
_s = sum(y, _s, _t);
// Start is _s, _t decreasing and non-adjacent. Sum is now (s + t + u)
// exactly with s, t, u non-adjacent and in decreasing order (except for
// possible zeros). The following code tries to normalize the result.
// Ideally, we want _s = round(s+t+u) and _u = round(s+t+u - _s). The
// following does an approximate job (and maintains the decreasing
// non-adjacent property). Here are two "failures" using 3-bit floats:
//
// Case 1: _s is not equal to round(s+t+u) -- off by 1 ulp
// [12, -1] - 8 -> [4, 0, -1] -> [4, -1] = 3 should be [3, 0] = 3
//
// Case 2: _s+_t is not as close to s+t+u as it shold be
// [64, 5] + 4 -> [64, 8, 1] -> [64, 8] = 72 (off by 1)
// should be [80, -7] = 73 (exact)
//
// "Fixing" these problems is probably not worth the expense. The
// representation inevitably leads to small errors in the accumulated
// values. The additional errors illustrated here amount to 1 ulp of the
// less significant word during each addition to the Accumulator and an
// additional possible error of 1 ulp in the reported sum.
//
// Incidentally, the "ideal" representation described above is not
// canonical, because _s = round(_s + _t) may not be true. For example,
// with 3-bit floats:
//
// [128, 16] + 1 -> [160, -16] -- 160 = round(145).
// But [160, 0] - 16 -> [128, 16] -- 128 = round(144).
//
if (_s == 0) // This implies t == 0,
_s = u; // so result is u
else
_t += u; // otherwise just accumulate u to t.
}
T Sum(T y) const throw() {
Accumulator a(*this);
a.Add(y);
return a._s;
}
public:
/**
* Construct from a \e T. This is not declared explicit, so that you can
* write <code>Accumulator<double> a = 5;</code>.
*
* @param[in] y set \e sum = \e y.
**********************************************************************/
Accumulator(T y = T(0)) throw() : _s(y), _t(0) {
STATIC_ASSERT(!std::numeric_limits<T>::is_integer,
"Accumulator type is not floating point");
}
/**
* Set the accumulator to a number.
*
* @param[in] y set \e sum = \e y.
**********************************************************************/
Accumulator& operator=(T y) throw() { _s = y; _t = 0; return *this; }
/**
* Return the value held in the accumulator.
*
* @return \e sum.
**********************************************************************/
T operator()() const throw() { return _s; }
/**
* Return the result of adding a number to \e sum (but don't change \e sum).
*
* @param[in] y the number to be added to the sum.
* @return \e sum + \e y.
**********************************************************************/
T operator()(T y) const throw() { return Sum(y); }
/**
* Add a number to the accumulator.
*
* @param[in] y set \e sum += \e y.
**********************************************************************/
Accumulator& operator+=(T y) throw() { Add(y); return *this; }
/**
* Subtract a number from the accumulator.
*
* @param[in] y set \e sum -= \e y.
**********************************************************************/
Accumulator& operator-=(T y) throw() { Add(-y); return *this; }
/**
* Multiply accumulator by an integer. To avoid loss of accuracy, use only
* integers such that \e n * \e T is exactly representable as a \e T (i.e.,
* +/- powers of two). Use \e n = -1 to negate \e sum.
*
* @param[in] n set \e sum *= \e n.
**********************************************************************/
Accumulator& operator*=(int n) throw() { _s *= n; _t *= n; return *this; }
/**
* Test equality of an Accumulator with a number.
**********************************************************************/
bool operator==(T y) const throw() { return _s == y; }
/**
* Test inequality of an Accumulator with a number.
**********************************************************************/
bool operator!=(T y) const throw() { return _s != y; }
/**
* Less operator on an Accumulator and a number.
**********************************************************************/
bool operator<(T y) const throw() { return _s < y; }
/**
* Less or equal operator on an Accumulator and a number.
**********************************************************************/
bool operator<=(T y) const throw() { return _s <= y; }
/**
* Greater operator on an Accumulator and a number.
**********************************************************************/
bool operator>(T y) const throw() { return _s > y; }
/**
* Greater or equal operator on an Accumulator and a number.
**********************************************************************/
bool operator>=(T y) const throw() { return _s >= y; }
};
} // namespace GeographicLib
#endif // GEOGRAPHICLIB_ACCUMULATOR_HPP
|