This file is indexed.

/usr/include/getfem/getfem_fourth_order.h is in libgetfem++-dev 4.2.1~beta1~svn4482~dfsg-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
/* -*- c++ -*- (enables emacs c++ mode) */
/*===========================================================================
 
 Copyright (C) 2006-2012 Yves Renard
 
 This file is a part of GETFEM++
 
 Getfem++  is  free software;  you  can  redistribute  it  and/or modify it
 under  the  terms  of the  GNU  Lesser General Public License as published
 by  the  Free Software Foundation;  either version 3 of the License,  or
 (at your option) any later version along with the GCC Runtime Library
 Exception either version 3.1 or (at your option) any later version.
 This program  is  distributed  in  the  hope  that it will be useful,  but
 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 License and GCC Runtime Library Exception for more details.
 You  should  have received a copy of the GNU Lesser General Public License
 along  with  this program;  if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
 
 As a special exception, you  may use  this file  as it is a part of a free
 software  library  without  restriction.  Specifically,  if   other  files
 instantiate  templates  or  use macros or inline functions from this file,
 or  you compile this  file  and  link  it  with other files  to produce an
 executable, this file  does  not  by itself cause the resulting executable
 to be covered  by the GNU Lesser General Public License.  This   exception
 does not  however  invalidate  any  other  reasons why the executable file
 might be covered by the GNU Lesser General Public License.
 
===========================================================================*/

/**@file getfem_fourth_order.h
   @author  Yves Renard <Yves.Renard@insa-lyon.fr>,
            Julien Pommier <Julien.Pommier@insa-toulouse.fr>
   @date January 6, 2006.
   @brief assembly procedures and bricks for fourth order pdes.
*/
#ifndef GETFEM_FOURTH_ORDER_H_
#define GETFEM_FOURTH_ORDER_H__

#include "getfem_modeling.h"
#include "getfem_models.h"
#include "getfem_assembling_tensors.h"

namespace getfem {
  
  /* ******************************************************************** */
  /*		Bilaplacian assembly routines.                            */
  /* ******************************************************************** */

  /**
     assembly of @f$\int_\Omega \Delta u \Delta v@f$.
     @ingroup asm
  */
  template<typename MAT, typename VECT>
  void asm_stiffness_matrix_for_bilaplacian
  (const MAT &M, const mesh_im &mim, const mesh_fem &mf,
   const mesh_fem &mf_data, const VECT &A,
   const mesh_region &rg = mesh_region::all_convexes()) {
    generic_assembly assem
      ("a=data$1(#2);"
       "M(#1,#1)+=sym(comp(Hess(#1).Hess(#1).Base(#2))(:,i,i,:,j,j,k).a(k))");
    assem.push_mi(mim);
    assem.push_mf(mf);
    assem.push_mf(mf_data);
    assem.push_data(A);
    assem.push_mat(const_cast<MAT &>(M));
    assem.assembly(rg);
  }

  template<typename MAT, typename VECT>
  void asm_stiffness_matrix_for_homogeneous_bilaplacian
  (const MAT &M, const mesh_im &mim, const mesh_fem &mf,
   const VECT &A, const mesh_region &rg = mesh_region::all_convexes()) {
    generic_assembly assem
      ("a=data$1(1);"
       "M(#1,#1)+=sym(comp(Hess(#1).Hess(#1))(:,i,i,:,j,j).a(1))");
    assem.push_mi(mim);
    assem.push_mf(mf);
    assem.push_data(A);
    assem.push_mat(const_cast<MAT &>(M));
    assem.assembly(rg);
  }


  template<typename MAT, typename VECT>
  void asm_stiffness_matrix_for_bilaplacian_KL
  (const MAT &M, const mesh_im &mim, const mesh_fem &mf,
   const mesh_fem &mf_data, const VECT &D_, const VECT &nu_,
   const mesh_region &rg = mesh_region::all_convexes()) {
    generic_assembly assem
      ("d=data$1(#2); n=data$2(#2);"
       "t=comp(Hess(#1).Hess(#1).Base(#2).Base(#2));"
       "M(#1,#1)+=sym(t(:,i,j,:,i,j,k,l).d(k)-t(:,i,j,:,i,j,k,l).d(k).n(l)"
       "+t(:,i,i,:,j,j,k,l).d(k).n(l))");
    assem.push_mi(mim);
    assem.push_mf(mf);
    assem.push_mf(mf_data);
    assem.push_data(D_);
    assem.push_data(nu_);
    assem.push_mat(const_cast<MAT &>(M));
    assem.assembly(rg);
  }

  template<typename MAT, typename VECT>
  void asm_stiffness_matrix_for_homogeneous_bilaplacian_KL
  (const MAT &M, const mesh_im &mim, const mesh_fem &mf,
   const VECT &D_, const VECT &nu_,
   const mesh_region &rg = mesh_region::all_convexes()) {
    generic_assembly assem
      ("d=data$1(1); n=data$2(1);"
       "t=comp(Hess(#1).Hess(#1));"
       "M(#1,#1)+=sym(t(:,i,j,:,i,j).d(1)-t(:,i,j,:,i,j).d(1).n(1)"
       "+t(:,i,i,:,j,j).d(1).n(1))");
    assem.push_mi(mim);
    assem.push_mf(mf);
    assem.push_data(D_);
    assem.push_data(nu_);
    assem.push_mat(const_cast<MAT &>(M));
    assem.assembly(rg);
  }

  /* ******************************************************************** */
  /*		Bilaplacian new bricks.                                    */
  /* ******************************************************************** */

  
  /** Adds a bilaplacian brick on the variable
      `varname` and on the mesh region `region`. 
      This represent a term :math:`\Delta(D \Delta u)`. 
      where :math:`D(x)` is a coefficient determined by `dataname` which
      could be constant or described on a f.e.m. The corresponding weak form
      is :math:`\int D(x)\Delta u(x) \Delta v(x) dx`.
  */
  size_type add_bilaplacian_brick
  (model &md, const mesh_im &mim, const std::string &varname,
   const std::string &dataname, size_type region = size_type(-1));

  /** Adds a bilaplacian brick on the variable
      `varname` and on the mesh region `region`.
      This represent a term :math:`\Delta(D \Delta u)` where :math:`D(x)`
      is a the flexion modulus determined by `dataname1`. The term is
      integrated by part following a Kirchhoff-Love plate model
      with `dataname2` the poisson ratio.
  */
  size_type add_bilaplacian_brick_KL
  (model &md, const mesh_im &mim, const std::string &varname,
   const std::string &dataname1, const std::string &dataname2,
   size_type region = size_type(-1));

  
  /* ******************************************************************** */
  /*		Bilaplacian old brick.                                    */
  /* ******************************************************************** */

# define MDBRICK_BILAPLACIAN 783465
  
  /** Bilaplacian brick @f$ D \Delta \Delta u @f$.

  @see asm_stiffness_matrix_for_bilaplacian
  @see mdbrick_mixed_isotropic_linearized_plate
  @ingroup bricks 
  */
  template<typename MODEL_STATE = standard_model_state>
  class mdbrick_bilaplacian
    : public mdbrick_abstract_linear_pde<MODEL_STATE> {
    
    TYPEDEF_MODEL_STATE_TYPES;

    bool KL;    /* Pure bilaplacian or Kirchhoff-Love plate model.        */
    mdbrick_parameter<VECTOR> D_;  /* D_ a scalar field (flexion modulus). */
    mdbrick_parameter<VECTOR> nu_;  /* nu_ a scalar field (Poisson ratio). */

    void proper_update_K(void) {
      if (!KL) {
	GMM_TRACE2("Assembling bilaplacian operator");
	asm_stiffness_matrix_for_bilaplacian
	  (this->K, this->mim, this->mf_u, D().mf(),  D().get(),
	   this->mf_u.linked_mesh().get_mpi_region());
      }
      else {
	GMM_ASSERT1(&(D().mf()) == &(nu().mf()), "mesh fems for the two "
		    "coefficients must be the same");
	GMM_TRACE2("Assembling bilaplacian for a Kirchhoff-Love plate");
	asm_stiffness_matrix_for_bilaplacian_KL
	  (this->K, this->mim, this->mf_u, D().mf(),  D().get(), nu().get(),
	   this->mf_u.linked_mesh().get_mpi_region());
      }
    }
  public :

    /** accessor to the coefficient D */
    mdbrick_parameter<VECTOR> &D() { return D_; }
    const mdbrick_parameter<VECTOR> &D() const { return D_; }
    /** accessor to the coefficient nu */
    mdbrick_parameter<VECTOR> &nu() { return nu_; }
    const mdbrick_parameter<VECTOR> &nu() const { return nu_; }

    void set_to_KL(void) { KL = true; }

    /** Constructor, the default coeff is a scalar equal to one
	(i.e. it gives the Laplace operator).

        The coeff can be later changed.

	@param mim the integration method that is used. 
	@param mf_u the mesh_fem for the unknown u.
	@param KL_ true for the Kirchhoff-Love plate model.
    */
    mdbrick_bilaplacian(const mesh_im &mim_, const mesh_fem &mf_u_, 
			bool KL_ = false)
      : mdbrick_abstract_linear_pde<MODEL_STATE>(mim_, mf_u_,
						 MDBRICK_BILAPLACIAN),
	KL(KL_), D_("D", mf_u_.linked_mesh(), this),
	nu_("nu", mf_u_.linked_mesh(), this) { D().set(1.); nu().set(0.3); }
  };


  /* ******************************************************************** */
  /*		Normale derivative source term assembly routines.         */
  /* ******************************************************************** */

  /**
     assembly of @f$\int_\Gamma{\partial_n u f}@f$.
     @ingroup asm
  */
  template<typename VECT1, typename VECT2>
  void asm_normal_derivative_source_term
  (VECT1 &B, const mesh_im &mim, const mesh_fem &mf, const mesh_fem &mf_data,
   const VECT2 &F, const mesh_region &rg) {
    GMM_ASSERT1(mf_data.get_qdim() == 1,
		"invalid data mesh fem (Qdim=1 required)");

    size_type Q = gmm::vect_size(F) / mf_data.nb_dof();

    const char *s;
    if (mf.get_qdim() == 1 && Q == 1)
      s = "F=data(#2);"
	"V(#1)+=comp(Grad(#1).Normal().Base(#2))(:,i,i,j).F(j);";
    else if (mf.get_qdim() == 1 && Q == gmm::sqr(mf.linked_mesh().dim()))
      s = "F=data(mdim(#1),mdim(#1),#2);"
	"V(#1)+=comp(Grad(#1).Normal().Normal().Normal().Base(#2))"
	"(:,i,i,k,l,j).F(k,l,j);";
    else if (mf.get_qdim() > size_type(1) && Q == mf.get_qdim())
      s = "F=data(qdim(#1),#2);"
	"V(#1)+=comp(vGrad(#1).Normal().Base(#2))(:,i,k,k,j).F(i,j);";
    else if (mf.get_qdim() > size_type(1) &&
	     Q == size_type(mf.get_qdim()*gmm::sqr(mf.linked_mesh().dim())))
      s = "F=data(qdim(#1),mdim(#1),mdim(#1),#2);"
	"V(#1)+=comp(vGrad(#1).Normal().Normal().Normal().Base(#2))"
	"(:,i,k,k,l,m,j).F(i,l,m,j);";
    else
      GMM_ASSERT1(false, "invalid rhs vector");
    asm_real_or_complex_1_param(B, mim, mf, mf_data, F, rg, s);
  }

  template<typename VECT1, typename VECT2>
  void asm_homogeneous_normal_derivative_source_term
  (VECT1 &B, const mesh_im &mim, const mesh_fem &mf,
   const VECT2 &F, const mesh_region &rg) {
    
    size_type Q = gmm::vect_size(F);

    const char *s;
    if (mf.get_qdim() == 1 && Q == 1)
      s = "F=data(1);"
	"V(#1)+=comp(Grad(#1).Normal())(:,i,i).F(1);";
    else if (mf.get_qdim() == 1 && Q == gmm::sqr(mf.linked_mesh().dim()))
      s = "F=data(mdim(#1),mdim(#1));"
	"V(#1)+=comp(Grad(#1).Normal().Normal().Normal())"
	"(:,i,i,l,j).F(l,j);";
    else if (mf.get_qdim() > size_type(1) && Q == mf.get_qdim())
      s = "F=data(qdim(#1));"
	"V(#1)+=comp(vGrad(#1).Normal())(:,i,k,k).F(i);";
    else if (mf.get_qdim() > size_type(1) &&
	     Q == size_type(mf.get_qdim()*gmm::sqr(mf.linked_mesh().dim())))
      s = "F=data(qdim(#1),mdim(#1),mdim(#1));"
	"V(#1)+=comp(vGrad(#1).Normal().Normal().Normal())"
	"(:,i,k,k,l,m).F(i,l,m);";
    else
      GMM_ASSERT1(false, "invalid rhs vector");
    asm_real_or_complex_1_param(B, mim, mf, mf, F, rg, s);
  }


  /* ******************************************************************** */
  /*		Normale derivative source term new brick.                 */
  /* ******************************************************************** */


  /** Adds a normal derivative source term brick
      :math:`F = \int b.\partial_n v` on the variable `varname` and the
      mesh region `region`.
     
      Update the right hand side of the linear system.
      `dataname` represents `b` and `varname` represents `v`.
  */
  size_type add_normal_derivative_source_term_brick
  (model &md, const mesh_im &mim, const std::string &varname,
   const std::string &dataname, size_type region);



  /* ******************************************************************** */
  /*		Normale derivative source term old brick.                 */
  /* ******************************************************************** */


  /**
     Normal derivative source term brick ( @f$ F = \int b.\partial_n v @f$ ).
     
     Update the right hand side of the linear system.

     @see asm_source_term
     @ingroup bricks
  */
  template<typename MODEL_STATE = standard_model_state>
  class mdbrick_normal_derivative_source_term
    : public mdbrick_abstract<MODEL_STATE>  {

    TYPEDEF_MODEL_STATE_TYPES;

    mdbrick_parameter<VECTOR> B_;
    VECTOR F_;
    bool F_uptodate;
    size_type boundary, num_fem, i1, nbd;

    const mesh_fem &mf_u(void) const { return this->get_mesh_fem(num_fem); }

    void proper_update(void) {
      i1 = this->mesh_fem_positions[num_fem];
      nbd = mf_u().nb_dof();
      gmm::resize(F_, nbd);
      gmm::clear(F_);
      F_uptodate = false;
    }

  public :

    mdbrick_parameter<VECTOR> &scalar_source_term(void)
    { B_.reshape(mf_u().get_qdim()); return B_;  }

    mdbrick_parameter<VECTOR> &tensorial_source_term(void) {
      B_.reshape(mf_u().get_qdim()*gmm::sqr(mf_u().linked_mesh().dim()));
      return B_;
    }

    const mdbrick_parameter<VECTOR> &source_term(void) const { return B_; }

    /// gives the right hand side of the linear system.
    const VECTOR &get_F(void) { 
      this->context_check();
      if (!F_uptodate || this->parameters_is_any_modified()) {
	F_uptodate = true;
	GMM_TRACE2("Assembling a source term");
	asm_normal_derivative_source_term
	  (F_, *(this->mesh_ims[0]), mf_u(), B_.mf(), B_.get(),
	   mf_u().linked_mesh().get_mpi_sub_region(boundary));
	this->parameters_set_uptodate();
      }
      return F_;
    }

    virtual void do_compute_tangent_matrix(MODEL_STATE &, size_type,
					   size_type) { }
    virtual void do_compute_residual(MODEL_STATE &MS, size_type i0,
				     size_type) {
      gmm::add(gmm::scaled(get_F(), value_type(-1)),
	       gmm::sub_vector(MS.residual(), gmm::sub_interval(i0+i1, nbd)));
    }

    /** Constructor defining the rhs
	@param problem the sub-problem to which this brick applies.
	@param mf_data_ the mesh_fem on which B_ is defined.
	@param B_ the value of the source term.
	@param bound the mesh boundary number on which the source term
	is applied.
	@param num_fem_ the mesh_fem number on which this brick is is applied.
    */
    mdbrick_normal_derivative_source_term
    (mdbrick_abstract<MODEL_STATE> &problem, const mesh_fem &mf_data_,
     const VECTOR &B__, size_type bound,
     size_type num_fem_=0) : B_("source_term",mf_data_, this), boundary(bound),
			     num_fem(num_fem_) {
      this->add_sub_brick(problem);
      if (bound != size_type(-1))
	this->add_proper_boundary_info(num_fem, bound,
				       MDBRICK_NORMAL_DERIVATIVE_NEUMANN);
      this->force_update();
      size_type Nb = gmm::vect_size(B__);
      if (Nb) {
	if (Nb == mf_data_.nb_dof() * mf_u().get_qdim()) {
	  B_.reshape(mf_u().get_qdim());
	   
	}
	else if (Nb == mf_data_.nb_dof() * mf_u().get_qdim()
		 * gmm::sqr(mf_u().linked_mesh().dim())) {
	  B_.reshape(mf_u().get_qdim()*gmm::sqr(mf_u().linked_mesh().dim()));
	}
	else 
	  GMM_ASSERT1(false, "Rhs vector has a wrong size");
	B_.set(B__);
      }
      else {
	B_.reshape(this->get_mesh_fem(num_fem).get_qdim());
      }
    }
  };

  /* ******************************************************************** */
  /*   	Special boundary condition for Kirchhoff-Love model.              */
  /* ******************************************************************** */

  /*
    assembly of the special boundary condition for Kirchhoff-Love model.
    @ingroup asm
  */
  template<typename VECT1, typename VECT2>
  void asm_neumann_KL_term
  (VECT1 &B, const mesh_im &mim, const mesh_fem &mf, const mesh_fem &mf_data,
   const VECT2 &M, const VECT2 &divM, const mesh_region &rg) {
    GMM_ASSERT1(mf_data.get_qdim() == 1,
		"invalid data mesh fem (Qdim=1 required)");

    generic_assembly assem
      ("MM=data$1(mdim(#1),mdim(#1),#2);"
       "divM=data$2(mdim(#1),#2);"
       "V(#1)+=comp(Base(#1).Normal().Base(#2))(:,i,j).divM(i,j);"
       "V(#1)+=comp(Grad(#1).Normal().Base(#2))(:,i,j,k).MM(i,j,k)*(-1);"
       "V(#1)+=comp(Grad(#1).Normal().Normal().Normal().Base(#2))(:,i,i,j,k,l).MM(j,k,l);");
    
    assem.push_mi(mim);
    assem.push_mf(mf);
    assem.push_mf(mf_data);
    assem.push_data(M);
    assem.push_data(divM);
    assem.push_vec(B);
    assem.assembly(rg);
  }

  template<typename VECT1, typename VECT2>
  void asm_neumann_KL_homogeneous_term
  (VECT1 &B, const mesh_im &mim, const mesh_fem &mf,
   const VECT2 &M, const VECT2 &divM, const mesh_region &rg) {

    generic_assembly assem
      ("MM=data$1(mdim(#1),mdim(#1));"
       "divM=data$2(mdim(#1));"
       "V(#1)+=comp(Base(#1).Normal())(:,i).divM(i);"
       "V(#1)+=comp(Grad(#1).Normal())(:,i,j).MM(i,j)*(-1);"
       "V(#1)+=comp(Grad(#1).Normal().Normal().Normal())(:,i,i,j,k).MM(j,k);");
    
    assem.push_mi(mim);
    assem.push_mf(mf);
    assem.push_data(M);
    assem.push_data(divM);
    assem.push_vec(B);
    assem.assembly(rg);
  }

  /* ******************************************************************** */
  /*		Kirchoff Love Neumann term new brick.                     */
  /* ******************************************************************** */


  /** Adds a Neumann term brick for Kirchhoff-Love model
      on the variable `varname` and the mesh region `region`.
      `dataname1` represents the bending moment tensor and  `dataname2`
      its divergence.
  */
  size_type add_Kirchoff_Love_Neumann_term_brick
  (model &md, const mesh_im &mim, const std::string &varname,
   const std::string &dataname1, const std::string &dataname2,
   size_type region);



  /**
     Old Brick for Special boundary condition for Kirchhoff-Love model

     @see asm_source_term
     @ingroup bricks
  */
  template<typename MODEL_STATE = standard_model_state>
  class mdbrick_neumann_KL_term : public mdbrick_abstract<MODEL_STATE>  {

    TYPEDEF_MODEL_STATE_TYPES;

    mdbrick_parameter<VECTOR> M_, divM_;
    VECTOR F_;
    bool F_uptodate;
    size_type boundary, num_fem, i1, nbd;

    const mesh_fem &mf_u(void) const { return this->get_mesh_fem(num_fem); }

    void proper_update(void) {
      i1 = this->mesh_fem_positions[num_fem];
      nbd = mf_u().nb_dof();
      gmm::resize(F_, nbd);
      gmm::clear(F_);
      F_uptodate = false;
    }

  public :

    mdbrick_parameter<VECTOR> &M(void) {
      M_.reshape(gmm::sqr(mf_u().linked_mesh().dim()));
      return M_;
    }

    const mdbrick_parameter<VECTOR> &M(void) const { return M_; }

    mdbrick_parameter<VECTOR> &divM(void) {
      divM_.reshape(mf_u().linked_mesh().dim());
      return divM_;
    }

    const mdbrick_parameter<VECTOR> &divM(void) const { return divM_; }

    /// gives the right hand side of the linear system.
    const VECTOR &get_F(void) { 
      this->context_check();
      if (!F_uptodate || this->parameters_is_any_modified()) {
	F_uptodate = true;
	GMM_TRACE2("Assembling a source term");
	asm_neumann_KL_term
	  (F_, *(this->mesh_ims[0]), mf_u(), M_.mf(), M_.get(), divM_.get(),
	   mf_u().linked_mesh().get_mpi_sub_region(boundary));
	this->parameters_set_uptodate();
      }
      return F_;
    }

    virtual void do_compute_tangent_matrix(MODEL_STATE &, size_type,
					   size_type) { }
    virtual void do_compute_residual(MODEL_STATE &MS, size_type i0,
				     size_type) {
      gmm::add(gmm::scaled(get_F(), value_type(-1)),
	       gmm::sub_vector(MS.residual(), gmm::sub_interval(i0+i1, nbd)));
    }

    mdbrick_neumann_KL_term
    (mdbrick_abstract<MODEL_STATE> &problem, const mesh_fem &mf_data_,
     const VECTOR &M__, const VECTOR &divM__, size_type bound,
     size_type num_fem_=0)
      : M_("M",mf_data_, this),
	divM_("divM",mf_data_, this),
	boundary(bound), num_fem(num_fem_) {
      this->add_sub_brick(problem);
      if (bound != size_type(-1))
	this->add_proper_boundary_info(num_fem, bound,
				       MDBRICK_NORMAL_DERIVATIVE_NEUMANN);
      this->force_update();
      size_type Nb = gmm::vect_size(M__);
      if (Nb) {
	M().set(mf_data_, M__);
	divM().set(mf_data_, divM__);
      }
      else {
	M_.reshape(gmm::sqr(mf_u().linked_mesh().dim()));
	divM_.reshape(mf_u().linked_mesh().dim());
      }
    }
  };


  /* ******************************************************************** */
  /*		Normal derivative Dirichlet assembly routines.            */
  /* ******************************************************************** */

  /**
     Assembly of normal derivative Dirichlet constraints
     @f$ \partial_n u(x) = r(x) @f$ in a weak form
     @f[ \int_{\Gamma} \partial_n u(x)v(x)=\int_{\Gamma} r(x)v(x) \forall v@f],
     where @f$ v @f$ is in
     the space of multipliers corresponding to mf_mult.

     size(r_data) = Q   * nb_dof(mf_rh);

     version = |ASMDIR_BUILDH : build H
     |ASMDIR_BUILDR : build R
     |ASMDIR_BUILDALL : do everything.

     @ingroup asm
  */

  template<typename MAT, typename VECT1, typename VECT2>
  void asm_normal_derivative_dirichlet_constraints
  (MAT &H, VECT1 &R, const mesh_im &mim, const mesh_fem &mf_u,
   const mesh_fem &mf_mult, const mesh_fem &mf_r,
   const VECT2 &r_data, const mesh_region &rg, bool R_must_be_derivated, 
   int version) {
    typedef typename gmm::linalg_traits<VECT1>::value_type value_type;
    typedef typename gmm::number_traits<value_type>::magnitude_type magn_type;
    
    rg.from_mesh(mim.linked_mesh()).error_if_not_faces();
    
    if (version & ASMDIR_BUILDH) {
      const char *s;
      if (mf_u.get_qdim() == 1 && mf_mult.get_qdim() == 1)
	s = "M(#1,#2)+=comp(Base(#1).Grad(#2).Normal())(:,:,i,i)";
      else
	s = "M(#1,#2)+=comp(vBase(#1).vGrad(#2).Normal())(:,i,:,i,j,j);";
      
      generic_assembly assem(s);
      assem.push_mi(mim);
      assem.push_mf(mf_mult);
      assem.push_mf(mf_u);
      assem.push_mat(H);
      assem.assembly(rg);
      gmm::clean(H, gmm::default_tol(magn_type())
		 * gmm::mat_maxnorm(H) * magn_type(1000));
    }
    if (version & ASMDIR_BUILDR) {
      GMM_ASSERT1(mf_r.get_qdim() == 1,
		"invalid data mesh fem (Qdim=1 required)");
      if (!R_must_be_derivated) {
	asm_normal_source_term(R, mim, mf_mult, mf_r, r_data, rg);
      } else {
	asm_real_or_complex_1_param
	  (R, mim, mf_mult, mf_r, r_data, rg,
	   "R=data(#2); V(#1)+=comp(Base(#1).Grad(#2).Normal())(:,i,j,j).R(i)");
      }
    }
  }

  /* ******************************************************************** */
  /*		Normal derivative Dirichlet condition new bricks.         */
  /* ******************************************************************** */

  /** Adds a Dirichlet condition on the normal derivative of the variable
      `varname` and on the mesh region `region` (which should be a boundary. 
      The general form is
      :math:`\int \partial_n u(x)v(x) = \int r(x)v(x) \forall v`
      where :math:`r(x)` is
      the right hand side for the Dirichlet condition (0 for
      homogeneous conditions) and :math:`v` is in a space of multipliers
      defined by the variable `multname` on the part of boundary determined
      by `region`. `dataname` is an optional parameter which represents
      the right hand side of the Dirichlet condition.
      If `R_must_be_derivated` is set to `true` then the normal
      derivative of `dataname` is considered.
  */
  size_type add_normal_derivative_Dirichlet_condition_with_multipliers
  (model &md, const mesh_im &mim, const std::string &varname,
   const std::string &multname, size_type region,
   const std::string &dataname = std::string(),
   bool R_must_be_derivated = false);
  

  /** Adds a Dirichlet condition on the normal derivative of the variable
      `varname` and on the mesh region `region` (which should be a boundary. 
      The general form is
      :math:`\int \partial_n u(x)v(x) = \int r(x)v(x) \forall v`
      where :math:`r(x)` is
      the right hand side for the Dirichlet condition (0 for
      homogeneous conditions) and :math:`v` is in a space of multipliers
      defined by the trace of mf_mult on the part of boundary determined
      by `region`. `dataname` is an optional parameter which represents
      the right hand side of the Dirichlet condition.
      If `R_must_be_derivated` is set to `true` then the normal
      derivative of `dataname` is considered.
  */
  size_type add_normal_derivative_Dirichlet_condition_with_multipliers
  (model &md, const mesh_im &mim, const std::string &varname,
   const mesh_fem &mf_mult, size_type region,
   const std::string &dataname = std::string(),
   bool R_must_be_derivated = false);

  /** Adds a Dirichlet condition on the normal derivative of the variable
      `varname` and on the mesh region `region` (which should be a boundary. 
      The general form is
      :math:`\int \partial_n u(x)v(x) = \int r(x)v(x) \forall v`
      where :math:`r(x)` is
      the right hand side for the Dirichlet condition (0 for
      homogeneous conditions) and :math:`v` is in a space of multipliers
      defined by the trace of a Lagranfe finite element method of degree
      `degree` and on the boundary determined
      by `region`. `dataname` is an optional parameter which represents
      the right hand side of the Dirichlet condition.
      If `R_must_be_derivated` is set to `true` then the normal
      derivative of `dataname` is considered.
  */
  size_type add_normal_derivative_Dirichlet_condition_with_multipliers
  (model &md, const mesh_im &mim, const std::string &varname,
   dim_type degree, size_type region,
   const std::string &dataname = std::string(),
   bool R_must_be_derivated = false);

    /** Adds a Dirichlet condition on the normal derivative of the variable
      `varname` and on the mesh region `region` (which should be a boundary. 
      The general form is
      :math:`\int \partial_n u(x)v(x) = \int r(x)v(x) \forall v`
      where :math:`r(x)` is
      the right hand side for the Dirichlet condition (0 for
      homogeneous conditions). For this brick the condition is enforced with
      a penalisation with a penanalization parameter `penalization_coeff` on
      the boundary determined by `region`.
      `dataname` is an optional parameter which represents
      the right hand side of the Dirichlet condition.
      If `R_must_be_derivated` is set to `true` then the normal
      derivative of `dataname` is considered.
      Note that is is possible to change the penalization coefficient
      using the function `getfem::change_penalization_coeff` of the standard
      Dirichlet condition.
  */
  size_type add_normal_derivative_Dirichlet_condition_with_penalization
  (model &md, const mesh_im &mim, const std::string &varname,
   scalar_type penalisation_coeff, size_type region, 
   const std::string &dataname = std::string(),
   bool R_must_be_derivated = false);
  

  /* ******************************************************************** */
  /*		Normal derivative Dirichlet condition old brick.          */
  /* ******************************************************************** */



  /** Normal derivative Dirichlet condition old brick.
   *
   *  This brick represent a Dirichlet condition on the normal derivative
   *  of the unknow for fourth order pdes.
   *  The general form is
   *  :math:`\int \partial_n u(x)v(x) = \int r(x)v(x) \forall v`
   *  where :math:`r(x)` is
   *  the right hand side for the Dirichlet condition (0 for
   *  homogeneous conditions) and :math:`v` is in a space of multipliers
   *  defined by the trace of mf_mult on the considered part of boundary.
   *
   *  @see asm_normal_derivative_dirichlet_constraints
   *  @see mdbrick_constraint
   *  @ingroup bricks
   */
  template<typename MODEL_STATE = standard_model_state>
  class mdbrick_normal_derivative_Dirichlet
    : public mdbrick_constraint<MODEL_STATE>  {
    
    TYPEDEF_MODEL_STATE_TYPES;

    mdbrick_parameter<VECTOR> R_;
    
    size_type boundary;
    bool mfdata_set, B_to_be_computed;
    bool R_must_be_derivated_; /* if true, then R(x) is a scalar field, and we will impose 
				  grad(u).n = grad(R).n on the boundary */
    gmm::sub_index SUB_CT;
    const mesh_fem *mf_mult;
    
    const mesh_fem &mf_u() { return *(this->mesh_fems[this->num_fem]); }
    const mesh_im  &mim() { return *(this->mesh_ims[0]); }

    void compute_constraints(unsigned version) {
      size_type ndu = mf_u().nb_dof(), ndm = mf_mult->nb_dof();
      gmm::row_matrix<gmm::rsvector<value_type> > M(ndm, ndu);
      VECTOR V(ndm);
      GMM_TRACE2("Assembling normal derivative Dirichlet constraints, version "
		 << version);
      asm_normal_derivative_dirichlet_constraints
	(M, V, mim(), mf_u(), *mf_mult, rhs().mf(), R_.get(),
	 mf_u().linked_mesh().get_mpi_sub_region(boundary), 
	 R_must_be_derivated_, version);
      if (version & ASMDIR_BUILDH)
	gmm::copy(gmm::sub_matrix(M, SUB_CT, gmm::sub_interval(0, ndu)), 
		  this->B);
      gmm::copy(gmm::sub_vector(V, SUB_CT), this->CRHS);
    }

    virtual void recompute_B_sizes(void) {
      if (!mfdata_set) {
	rhs().set(classical_mesh_fem(mf_u().linked_mesh(), 0), 0);
 	mfdata_set = true;
      }
      size_type nd = mf_u().nb_dof();
      dal::bit_vector dof_on_bound;
      if (mf_mult->is_reduced())
	dof_on_bound.add(0, mf_mult->nb_dof());
      else
	dof_on_bound = mf_mult->basic_dof_on_region(boundary);
      size_type nb_const = dof_on_bound.card();
      std::vector<size_type> ind_ct;
      for (dal::bv_visitor i(dof_on_bound); !i.finished(); ++i)
	ind_ct.push_back(i);
      SUB_CT = gmm::sub_index(ind_ct);
      gmm::resize(this->B, nb_const, nd);
      gmm::resize(this->CRHS, nb_const);
      B_to_be_computed = true;
    }

    virtual void recompute_B(void) {
      unsigned version = 0;
      if (R_.is_modified()) { version = ASMDIR_BUILDR; }
      if (B_to_be_computed) { version = ASMDIR_BUILDR | ASMDIR_BUILDH; }
      if (version) { 
	compute_constraints(version);
	this->parameters_set_uptodate();
	B_to_be_computed = false;
      }
    }

  public :

    /** Change the @f$ r(x) @f$ right hand side.
     *	@param R a vector of size @c Q*mf_data.nb_dof() .
     */
    mdbrick_parameter<VECTOR> &rhs() { 
      unsigned n = (R_must_be_derivated_ == false ? mf_u().linked_mesh().dim() : 1);
      R_.reshape(n*mf_u().get_qdim());
      return R_; 
    }

    void R_must_be_derivated() {
      R_must_be_derivated_ = true;
    }
    
    /** Constructor which does not define the rhs (i.e. which sets an
     *	homogeneous Dirichlet condition)
     *	@param problem the sub problem to which this brick is applied.
     *	@param bound the boundary number for the dirichlet condition.
     *  @param mf_mult_ the mesh_fem for the multipliers.
     *	@param num_fem_ the mesh_fem number on which this brick is is applied.
     */
    mdbrick_normal_derivative_Dirichlet
    (mdbrick_abstract<MODEL_STATE> &problem, size_type bound,
     const mesh_fem &mf_mult_ = dummy_mesh_fem(), size_type num_fem_=0)
      : mdbrick_constraint<MODEL_STATE>(problem, num_fem_), R_("R", this),
	boundary(bound) {
      mf_mult = (&mf_mult_ == &dummy_mesh_fem()) ? &(mf_u()) : &mf_mult_;
      this->add_proper_boundary_info(this->num_fem, boundary, 
				     MDBRICK_NORMAL_DERIVATIVE_DIRICHLET);
      this->add_dependency(*mf_mult);
      mfdata_set = false; B_to_be_computed = true;
      R_must_be_derivated_ = false;
      this->force_update();
    }
  };




}  /* end of namespace getfem.                                             */


#endif /* GETFEM_FOURTH_ORDER_H__ */