This file is indexed.

/usr/include/getfem/getfem_mesh.h is in libgetfem++-dev 4.2.1~beta1~svn4482~dfsg-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
/* -*- c++ -*- (enables emacs c++ mode) */
/*===========================================================================
 
 Copyright (C) 1999-2012 Yves Renard
 
 This file is a part of GETFEM++
 
 Getfem++  is  free software;  you  can  redistribute  it  and/or modify it
 under  the  terms  of the  GNU  Lesser General Public License as published
 by  the  Free Software Foundation;  either version 3 of the License,  or
 (at your option) any later version along with the GCC Runtime Library
 Exception either version 3.1 or (at your option) any later version.
 This program  is  distributed  in  the  hope  that it will be useful,  but
 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 License and GCC Runtime Library Exception for more details.
 You  should  have received a copy of the GNU Lesser General Public License
 along  with  this program;  if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
 
 As a special exception, you  may use  this file  as it is a part of a free
 software  library  without  restriction.  Specifically,  if   other  files
 instantiate  templates  or  use macros or inline functions from this file,
 or  you compile this  file  and  link  it  with other files  to produce an
 executable, this file  does  not  by itself cause the resulting executable
 to be covered  by the GNU Lesser General Public License.  This   exception
 does not  however  invalidate  any  other  reasons why the executable file
 might be covered by the GNU Lesser General Public License.
 
===========================================================================*/

/**@file getfem_mesh.h
   @author  Yves Renard <Yves.Renard@insa-lyon.fr>
   @date November 05, 1999.
   @brief Define a getfem::getfem_mesh object.
*/

#ifndef GETFEM_MESH_H__
#define GETFEM_MESH_H__

#include <bitset>
#include "dal_shared_ptr.h"
#include "bgeot_ftool.h"
#include "bgeot_mesh.h"
#include "bgeot_geotrans_inv.h"
#include "getfem_context.h"
#include "getfem_mesh_region.h"

namespace getfem {

  /* Version counter for convexes. */
  gmm::uint64_type act_counter(void);

  class integration_method;
  typedef boost::intrusive_ptr<const integration_method> pintegration_method;

  /**@addtogroup mesh*/
  /**@{*/

  /** Describe a mesh (collection of convexes and points).  Note that
      mesh object have no copy constructor, use
      mesh::copy_from instead.  This class inherits from
      bgeot::mesh<base_node> and bgeot::mesh_structure. Compared to
      bgeot::mesh, It provides some additional methods for convenience
      (add_simplex_by_points etc...), and it is able to send
      "messages" to objects that depend on it (for example
      getfem::mesh_fem) when something in the mesh has been
      modified. For example, when a convex is removed from the mesh,
      the mesh_fem that uses this mesh automagically removes any finite
      element on the convex, and renumbers the dof.

      Points and convex numbering:

      The numbering of points and convexes is not dynamical, which
      means that when a point or a convex has been removed from the mesh,
      there might be holes in the numbering. To loop over the set of
      valid points in the mesh, one should use

      @code
      for (dal::bv_visitor ip(mesh.points_index()); !ip.finished(); ++ip) {
      ...
      }
      @endcode

      instead of

      @code
      for (size_type ip = 0; ip < mesh.nb_points(); ++ip) {
      }
      @endcode
      (same thing for the convexes, always use convex_index()).
  */

  class mesh : virtual public dal::static_stored_object,
		       public bgeot::basic_mesh,
		       public context_dependencies {
  public :

    typedef bgeot::basic_mesh::PT_TAB PT_TAB;
    typedef bgeot::mesh_structure::ind_cv_ct ind_cv_ct;
    typedef bgeot::mesh_structure::ind_set ind_set;
    typedef bgeot::mesh_structure::ind_pt_face_ct ind_pt_face_ct;
    typedef bgeot::mesh_structure::point_ct point_ct;
    typedef bgeot::basic_mesh::ref_mesh_pt_ct ref_mesh_pt_ct;
    typedef bgeot::basic_mesh::ref_mesh_face_pt_ct ref_mesh_face_pt_ct;
    typedef bgeot::convex<base_node, ref_mesh_pt_ct> ref_convex;


  protected :
    /*
     * When a new field is added, do NOT forget to add it in copy_from method!
     */

    mutable std::map<size_type, mesh_region> cvf_sets;
    mutable dal::bit_vector valid_cvf_sets;
    void handle_region_refinement(size_type, const std::vector<size_type> &,
				  bool);

    mutable bool cuthill_mckee_uptodate;
    dal::dynamic_array<gmm::uint64_type> cvs_v_num;
    mutable std::vector<size_type> cmk_order; // cuthill-mckee
    void init(void);

#if GETFEM_PARA_LEVEL > 1
    mutable bool modified;
    mutable mesh_region mpi_region;
    mutable std::map<size_type, mesh_region> mpi_sub_region;
    // mutable dal::dynamic_array<mesh_region> mpi_sub_region;
    mutable dal::bit_vector valid_sub_regions;

    void touch(void) {
      modified = true; cuthill_mckee_uptodate = false;
      context_dependencies::touch();
    }
    void compute_mpi_region(void) const ;
    void compute_mpi_sub_region(size_type) const;

  public :

    const mesh_region& get_mpi_region(void) const
    { if (modified) compute_mpi_region(); return mpi_region; }
    const mesh_region& get_mpi_sub_region(size_type n) const {
      if (modified) compute_mpi_region();
      if (n == size_type(-1)) return mpi_region;
      if (!(valid_sub_regions.is_in(n))) compute_mpi_sub_region(n);
      return mpi_sub_region[n];
    }
    void intersect_with_mpi_region(mesh_region &rg) const;
#else
    void touch(void)
    { cuthill_mckee_uptodate = false; context_dependencies::touch(); }
  public :
    const mesh_region get_mpi_region(void) const
    { return mesh_region::all_convexes(); }
    const mesh_region get_mpi_sub_region(size_type n) const {
      if (n == size_type(-1)) return get_mpi_region();
      return cvf_sets[n];
    }
    void intersect_with_mpi_region(mesh_region &) const {}
#endif

    /// Constructor.
    mesh(const std::string name = "");
    mesh(const bgeot::basic_mesh &m, const std::string name = "");
    inline std::string get_name() const {return name_;}
    void update_from_context(void) const {}
    /// Mesh dimension.
    dim_type dim(void) const { return pts.dim(); }
    /// Return the array of PT.
    const PT_TAB &points(void) const { return pts; }
    /// Return the array of PT.
    PT_TAB &points(void) { return pts; }

    /// Return a (pseudo)container of the points of a given convex
    ref_mesh_pt_ct points_of_convex(size_type ic) const {
      const ind_cv_ct &rct = ind_points_of_convex(ic);
      return ref_mesh_pt_ct(pts.begin(), rct.begin(), rct.end());
    }

    /// Return a (pseudo)container of points of face of a given convex
    ref_mesh_face_pt_ct points_of_face_of_convex(size_type ic,
						 size_type f) const {
      ind_pt_face_ct rct = ind_points_of_face_of_convex(ic, short_type(f));
      return ref_mesh_face_pt_ct(pts.begin(), rct.begin(), rct.end());
    }

    /// return a bgeot::convex object for the convex number ic.
    ref_convex convex(size_type ic) const
    { return ref_convex(structure_of_convex(ic), points_of_convex(ic)); }

    /** Add the point pt to the mesh and return the index of the
	point.

	If the point is too close to an existing point, the
	function does not create a new point, and returns the index of the
	already existing point.
	@param pt the point coordinates.
    */
    size_type add_point(const base_node &pt) { return pts.add_node(pt); }
    //			scalar_type characteristic_size = scalar_type(1));

    /// Give the number of geometrical nodes in the mesh.
    size_type nb_points(void) const { return pts.card(); }
    /// Return the points index
    const dal::bit_vector &points_index(void) const { return pts.index(); }
    /** Delete the point of index i from the mesh if it is not linked to a
	convex.
    */
    void sup_point(size_type i) { if (!is_point_valid(i)) pts.sup_node(i); }
    /// Swap the indexes of points of index i and j in the whole structure.
    void swap_points(size_type i, size_type j)
    { if (i != j) { pts.swap_points(i,j); mesh_structure::swap_points(i,j); } }
    /** Search a point given its coordinates.
	@param pt the point that is searched.
	@return the point index if pt was found in (or approximatively in)
	the mesh nodes, size_type(-1) if not found.
    */
    size_type search_point(const base_node &pt, const scalar_type radius=0) const
    { return pts.search_node(pt,radius); }
    /** Return the bgeot::geometric_trans attached to a convex.
	@param ic the convex number.
    */
    bgeot::pgeometric_trans trans_of_convex(size_type ic) const {
      GMM_ASSERT1(trans_exists[ic],
		  "No geometric transformation or nonexisting element");
      return gtab[ic];
    }

    /// return the version number of the convex ic.
    gmm::uint64_type convex_version_number(size_type ic) const
    { return cvs_v_num[ic]; }

    /** Add a convex to the mesh.
	This methods assume that the convex nodes have already been
	added to the mesh.
	@param pgt the geometric transformation of the convex.
	@param ipts an iterator to a set of point index.
	@return the number of the new convex.
     */
    template<class ITER>
    size_type add_convex(bgeot::pgeometric_trans pgt, ITER ipts) {
      bool present;
      size_type i = bgeot::mesh_structure::add_convex(pgt->structure(),
						       ipts, &present);
      gtab[i] = pgt; trans_exists[i] = true;
      if (!present) { cvs_v_num[i] = act_counter(); touch(); }
      return i;
    }

    /** Add a convex to the mesh, given a geometric transformation and a
	list of point coordinates.

	As a side-effect, the points are also added to the mesh (if
	they were not already in the mesh).

	@param pgt the geometric transformation of the convex.
	@param ipts an iterator on a set of getfem::base_node.
	@return the number of the new convex.
    */
    template<class ITER>
    size_type add_convex_by_points(bgeot::pgeometric_trans pgt, ITER ipts);

    /** Add a simplex to the mesh, given its dimension and point numbers.
     */
    template<class ITER>
    size_type add_simplex(dim_type di, ITER ipts)
    { return add_convex(bgeot::simplex_geotrans(di, 1), ipts); }
    /** Add a simplex to the mesh, given its dimension and point coordinates.
	@see add_convex_by_points.
     */
    template<class ITER>
    size_type add_simplex_by_points(dim_type dim, ITER ipts);
    /** Add a segment to the mesh, given the point id of its vertices. */
    size_type add_segment(size_type a, size_type b);
    /** Add a segment to the mesh, given the coordinates of its vertices. */
    size_type add_segment_by_points(const base_node &pt1,
				    const base_node &pt2) {
      size_type ipt1 = add_point(pt1);
      size_type ipt2 = add_point(pt2);
      return add_segment(ipt1, ipt2);
    }
    /** Add a triangle to the mesh, given the point id of its vertices. */
    size_type add_triangle(size_type a,size_type b, size_type c);
    /** Add a triangle to the mesh, given the coordinates of its vertices. */
    size_type add_triangle_by_points(const base_node &p1,
				     const base_node &p2,
				     const base_node &p3);
    /** Add a tetrahedron to the mesh, given the point id of its vertices. */
    size_type add_tetrahedron(size_type a,
			      size_type b, size_type c, size_type d);
    /** Add a tetrahedron to the mesh, given the coordinates of its vertices. */
    size_type add_tetrahedron_by_points(const base_node &p1,
					const base_node &p2,
					const base_node &p3,
					const base_node &p4);
    /** Add a parallelepiped to the mesh.
	@param di dimension of the parallelepiped
	@param ipts iterator on the list of point id.
	@return the number of the new convex.
    */
    template<class ITER>
    size_type add_parallelepiped(dim_type di, const ITER &ipts);
    /** Add a parallelepiped to the mesh.
	@param di dimension of the parallelepiped
	@param ps iterator on the list of point coordinates.
	@return the number of the new convex.
    */
    template<class ITER>
    size_type add_parallelepiped_by_points(dim_type di, const ITER &ps);
    /* Add a parallelepiped of dimension dim to the
     *          mesh. org is the point of type base_node representing
     *          the origine and "it" is an iterator on a list of
     *          vectors of type base_vector.
     *          Return the index of the convex in the mesh.

    template<class ITER>
    size_type add_parallelepiped_by_vectors(dim_type di,
				  const base_node &org, const ITER &vects);
     */
    /** Add a prism to the mesh.
	@param di dimension of the prism
	@param ipts iterator on the list of point id.
	@return the number of the new convex.
    */
    template<class ITER>
    size_type add_prism(dim_type di, const ITER &ipts);

    /** Add a prism to the mesh.
	@param di dimension of the prism
	@param ps iterator on the list of point coordinates.
	@return the number of the new convex.
    */
    template<class ITER>
    size_type add_prism_by_points(dim_type di, const ITER &ps);

    size_type add_face_of_convex(size_type, short_type)
    { GMM_ASSERT1(false, "Sorry, to be done"); }

    void add_faces_of_convex(size_type)
    { GMM_ASSERT1(false, "Sorry, to be done"); }

    /// Delete the convex of index ic from the mesh.
    void sup_convex(size_type ic, bool sup_points = false);
    /** Swap the indexes of the convex of indexes i and j
     *          in the whole structure.
     */
    void swap_convex(size_type i, size_type j);

    /** Return the normal of the given convex face, evaluated at the point pt.
	@param ic the convex number.
	@param f the face number.
	@param pt the point at which the normal is taken, in the
	reference convex. This point should of course be on the
	correspounding face of the reference convex, except if the
	geometric transformation is linear: in that case, the normal
	constant.
	@return the face normal.
    */
    base_small_vector normal_of_face_of_convex(size_type ic, short_type f,
					       const base_node &pt) const;
    /* Return the normal of the given convex face.

       @param ic the convex number.
       @param f the face number.
       @param n local point index in the reference convex, at which the normal will be evaluated -- should be faster than the function above since it uses a bgeot::geotrans_precomp .

       @return the face normal.
    */
    base_small_vector normal_of_face_of_convex(size_type ic, short_type f,
					       size_type n=0) const;


    /* Return the mean outward unit normal vector of the given convex
       face computed on the geometrical nodes of the face.

       @param ic the convex number.
       @param f the face number.
       @return the face normal.
    */
    base_small_vector mean_normal_of_face_of_convex(size_type ic,
                                                    short_type f) const;
    /** Return a local basis for the convex face.
       @param ic the convex number.
       @param f the face number.
       @param pt the point coordinates.
       @return a matrix with the normal vector in its first column, and the
       tangent vectors in the other columns.
    */
    base_matrix local_basis_of_face_of_convex(size_type ic, short_type f,
					      const base_node &pt) const;
    /** Return a local basis for the convex face.
       @param ic the convex number.
       @param f the face number.
       @param n local point index in the reference convex, at which the basis will be evaluated -- should be faster than the function above since it uses a bgeot::geotrans_precomp .
       @return a matrix with the normal vector in its first column, and the
       tangent vectors in the other columns.
    */
    base_matrix local_basis_of_face_of_convex(size_type ic, short_type f,
					      size_type n) const;
    /** Return an estimate of the convex quality (0 <= Q <= 1). */
    scalar_type convex_quality_estimate(size_type ic) const;
    /** Return an estimate of the convex area.
	@param ic the convex number
	@param degree the degree of the approximation integration
	method used to compute the area.
    */
    scalar_type convex_area_estimate(size_type ic, size_type degree=2) const;
    /** Return an estimate of the convex largest dimension. @see getfem::convex_quality_estimate */
    scalar_type convex_radius_estimate(size_type ic) const;
    /** Return an estimate of the convex smallest dimension. @see getfem::convex_radius_estimate */
    scalar_type minimal_convex_radius_estimate() const;
    /** Return an estimate of the convex largest dimension. @see getfem::convex_radius_estimate */
    scalar_type maximal_convex_radius_estimate() const;
    /** Apply the given translation to each mesh node. */
    void translation(const base_small_vector &);
    /** apply the given matrix transformation to each mesh node. */
    void transformation(const base_matrix &);
    /** Return the bounding box [Pmin - Pmax] of the mesh. */
    void bounding_box(base_node& Pmin, base_node &Pmax) const;
    /** Return the region of index 'id'. Regions stored in mesh are
	updated when the mesh is modified (i.e. when a convex is
	removed from the mesh, it is also removed from all regions of
	the mesh.
    */
    const mesh_region region(size_type id) const {
      if (id == mesh_region::all_convexes().id())
        return mesh_region::all_convexes();
      else if (!has_region(id)) {
        valid_cvf_sets.add(id);
        cvf_sets[id] = mesh_region(const_cast<mesh&>(*this),id);
      }
      return cvf_sets[id];
    }
    /* Return a reference such that operator= works as expected */
    mesh_region &region(size_type id) {
      if (!has_region(id)) {
        valid_cvf_sets.add(id);
        cvf_sets[id] = mesh_region(*this,id);
      }
      return cvf_sets[id];
    }
    /** Return true if the region of index 's' exists in the mesh */
    bool has_region(size_type s) const { return valid_cvf_sets[s]; }
    void add_face_to_set(size_type s, size_type c, short_type f) IS_DEPRECATED;
    const dal::bit_vector &regions_index() const { return valid_cvf_sets; }

    /*
    void sup_face_from_set(size_type b, size_type c, short_type f)
    { if (valid_cvf_sets[b]) { cvf_sets[b].sup(c,f); touch(); } }*/
    /** Remove the region of index b. */
    void sup_region(size_type b) {
      if (valid_cvf_sets[b])
	{ cvf_sets[b].clear(); valid_cvf_sets.sup(b); touch(); }
    }
    /** Remove all references to a convex from all regions stored in the mesh.
     @param cv the convex number.*/
    void sup_convex_from_regions(size_type cv);
    /** Pack the mesh : renumber convexes and nodes such that there
	is no holes in their numbering. Do NOT do the Cuthill-McKee. */
    void optimize_structure(void);
    /// Return the list of convex IDs for a Cuthill-McKee ordering
    const std::vector<size_type> &cuthill_mckee_ordering() const;
    /// Erase the mesh.
    void clear(void);
    /** Write the mesh to a file. The format is getfem-specific.
	@param name the file name.
    */
    void write_to_file(const std::string &name) const;
    /** Write the mesh to a text stream.
	@param ost the stream.
    */
    void write_to_file(std::ostream &ost) const;
    /** Load the mesh from a file.
	@param name the file name.
	@see getfem::import_mesh.
    */
    void read_from_file(const std::string &name);
    /** Load the mesh from a text stream.
	@param ist the text stream.
	@see getfem::import_mesh.
    */
    void read_from_file(std::istream &ist);
    /** Clone a mesh */
    void copy_from(const mesh& m); /* might be the copy constructor */
    size_type memsize(void) const;
    ~mesh() {
      if (Bank_info) delete Bank_info;
    }

    friend class mesh_region;
  private:
    void swap_convex_in_regions(size_type c1, size_type c2);
    void touch_from_region(size_type /*id*/) { touch(); }
    void to_edges() {} /* to be done, the to_edges of mesh_structure does   */
                       /* not handle geotrans */

    //
    // Bank refinement
    //

    // TODO : - mise a jour des mesh_regions ;
    //        - dialogue avec mesh_im et mesh_fem

    struct green_simplex {
      bgeot::pgeometric_trans pgt;
      std::vector<size_type> sub_simplices;
      bgeot::convex<base_node> cv;
      std::vector<size_type> ipt_loc;
    };
    struct edge {
      size_type i0, i1, i2;
      bool operator <(const edge &e) const;
      edge(size_type a, size_type b) : i0(0), i1(a), i2(b) {}
      edge(size_type a, size_type b, size_type c) : i0(a), i1(b), i2(c) {}
    };
    typedef std::set<edge> edge_set;

    struct Bank_info_struct {
      dal::bit_vector is_green_simplex; // indices of green simplices.
      std::map<size_type, size_type> num_green_simplex;
      dal::dynamic_tas<green_simplex> green_simplices;
      edge_set edges;
    };

    Bank_info_struct *Bank_info;

    std::string name_; //optional name of the mesh
    void set_name(const std::string&);

    void Bank_convex_with_edge(size_type, size_type,
			       std::vector<size_type> &);
    bool Bank_is_convex_having_points(size_type,
				      const std::vector<size_type> &);
    void Bank_sup_convex_from_green(size_type);
    void Bank_swap_convex(size_type, size_type);
    void Bank_build_first_mesh(mesh &, size_type);
    void Bank_basic_refine_convex(size_type);
    void Bank_refine_normal_convex(size_type);
    size_type Bank_test_and_refine_convex(size_type, dal::bit_vector &,
					  bool = true);
    void Bank_build_green_simplexes(size_type, std::vector<size_type> &);

  public :

    /** Use the Bank strategy to refine some convexes. */
    void Bank_refine(dal::bit_vector);

  };

  inline void mesh::add_face_to_set(size_type s, size_type c, short_type f) {
    region(s).add(c,f);
  }

  /**
   * build a N+1 dimensions mesh from a N-dimensions mesh by extrusion.
   */
  void extrude(const mesh& in, mesh& out, unsigned nb_layers);

 template<class ITER>
    size_type mesh::add_convex_by_points(bgeot::pgeometric_trans pgt,
					                           ITER ipts)
  {
    short_type nb = short_type(pgt->nb_points());
    std::vector<size_type> ind(nb);
    for (short_type i = 0; i < nb; ++ipts, ++i) ind[i] = add_point(*ipts);
    return add_convex(pgt, ind.begin());
  }

  template<class ITER>
   size_type mesh::add_simplex_by_points(dim_type di, ITER ipts)
  { return add_convex_by_points(bgeot::simplex_geotrans(di, 1), ipts); }

  template<class ITER>
    size_type mesh::add_parallelepiped(dim_type di, const ITER &ipts)
  { return add_convex(bgeot::parallelepiped_geotrans(di, 1), ipts); }

  template<class ITER>
    size_type mesh::add_parallelepiped_by_points
    (dim_type di, const ITER &ps)
  { return add_convex_by_points(bgeot::parallelepiped_geotrans(di, 1), ps); }

  template<class ITER>
    size_type mesh::add_prism(dim_type di, const ITER &ipts)
  { return add_convex(bgeot::prism_geotrans(di, 1), ipts); }

  template<class ITER>
    size_type mesh::add_prism_by_points
    (dim_type di, const ITER &ps)
  { return add_convex_by_points(bgeot::prism_geotrans(di, 1), ps); }

  typedef mesh *pmesh;

  /** rough estimate of the convex area.
      @param pgt the geometric transformation.
      @param pts the convex nodes.
      @param pai the approximate integration used for the computation
      of the convex area.
   */
  scalar_type convex_area_estimate(bgeot::pgeometric_trans pgt,
				   const base_matrix& pts,
				   pintegration_method pim);

  /** rough estimate of the maximum value of the condition
   * number of the jacobian of the geometric transformation */
  scalar_type convex_quality_estimate(bgeot::pgeometric_trans pgt,
				      const base_matrix& pts);

  /** rough estimate of the radius of the convex using the largest eigenvalue
   * of the jacobian of the geometric transformation */
  scalar_type convex_radius_estimate(bgeot::pgeometric_trans pgt,
				     const base_matrix& pts);

  /* stores a convex face. if f == -1, it is the whole convex.             */
  struct convex_face;
  typedef std::vector<convex_face> convex_face_ct;
  struct convex_face  {
    size_type cv;
    size_type f;
    inline bool operator < (const convex_face &e) const
    {
      if (cv < e.cv) return true; if (cv > e.cv) return false;
      if (f < e.f) return true; else if (f > e.f) return false;
      return false;
    }
    bool is_face() const { return f != size_type(-1); }
    convex_face(size_type cv_, size_type f_=size_type(-1)) : cv(cv_), f(f_) {}
    convex_face() : cv(size_type(-1)), f(size_type(-1)) {}
  }; //  IS_DEPRECATED;

  /** returns a list of "exterior" faces of a mesh
   * (i.e. faces which are not shared by two convexes)
   * + convexes whose dimension is smaller that m.dim()
   */
  void  outer_faces_of_mesh(const mesh &m, const dal::bit_vector& cvlst,
			    convex_face_ct& flist);

  inline void outer_faces_of_mesh(const mesh &m, convex_face_ct& flist)
    IS_DEPRECATED;
  inline void outer_faces_of_mesh(const mesh &m, convex_face_ct& flist)
  { outer_faces_of_mesh(m,m.convex_index(),flist); }

  void  outer_faces_of_mesh(const mesh &m, const mesh_region &cvlst,
			    mesh_region &flist);

  inline void  outer_faces_of_mesh(const mesh &m, mesh_region &flist)
  { outer_faces_of_mesh(m,m.convex_index(),flist); }


  inline mesh_region outer_faces_of_mesh(const mesh &m)
  { mesh_region fl; outer_faces_of_mesh(m,m.convex_index(),fl); return fl; }

  /** Select in the region mr the faces of the mesh m with their unit
      outward vector having a maximal angle "angle" with the vector V.
   */ 
  mesh_region select_faces_of_normal(const mesh &m, const mesh_region &mr,
                                     const base_small_vector &V,
                                     scalar_type angle);


  ///@}
}  /* end of namespace getfem.                                             */


#endif /* GETFEM_MESH_H__  */