This file is indexed.

/usr/include/ginac/tensor.h is in libginac-dev 1.6.2-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/** @file tensor.h
 *
 *  Interface to GiNaC's special tensors. */

/*
 *  GiNaC Copyright (C) 1999-2011 Johannes Gutenberg University Mainz, Germany
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 */

#ifndef GINAC_TENSOR_H
#define GINAC_TENSOR_H

#include "ex.h"
#include "archive.h"

namespace GiNaC {

/** This class holds one of GiNaC's predefined special tensors such as the
 *  delta and the metric tensors. They are represented without indices.
 *  To attach indices to them, wrap them in an object of class indexed. */
class tensor : public basic
{
	GINAC_DECLARE_REGISTERED_CLASS(tensor, basic)

	// functions overriding virtual functions from base classes
protected:
	unsigned return_type() const { return return_types::noncommutative_composite; }

	// non-virtual functions in this class
public:
	/** Replace dummy index in contracted-with object by the contracting
	 *  object's second index (used internally for delta and metric tensor
	 *  contractions. */
	bool replace_contr_index(exvector::iterator self, exvector::iterator other) const;
};


/** This class represents the delta tensor. If indexed, it must have exactly
 *  two indices of the same type. */
class tensdelta : public tensor
{
	GINAC_DECLARE_REGISTERED_CLASS(tensdelta, tensor)

	// functions overriding virtual functions from base classes
public:
	bool info(unsigned inf) const;
	ex eval_indexed(const basic & i) const;
	bool contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const;

	// non-virtual functions in this class
protected:
	unsigned return_type() const { return return_types::commutative; }
	void do_print(const print_context & c, unsigned level) const;
	void do_print_latex(const print_latex & c, unsigned level) const;
};
GINAC_DECLARE_UNARCHIVER(tensdelta);


/** This class represents a general metric tensor which can be used to
 *  raise/lower indices. If indexed, it must have exactly two indices of the
 *  same type which must be of class varidx or a subclass. */
class tensmetric : public tensor
{
	GINAC_DECLARE_REGISTERED_CLASS(tensmetric, tensor)

	// functions overriding virtual functions from base classes
public:
	bool info(unsigned inf) const;
	ex eval_indexed(const basic & i) const;
	bool contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const;

	// non-virtual functions in this class
protected:
	unsigned return_type() const { return return_types::commutative; }
	void do_print(const print_context & c, unsigned level) const;
};
GINAC_DECLARE_UNARCHIVER(tensmetric);


/** This class represents a Minkowski metric tensor. It has all the
 *  properties of a metric tensor and is (as a matrix) equal to
 *  diag(1,-1,-1,...) or diag(-1,1,1,...). */
class minkmetric : public tensmetric
{
	GINAC_DECLARE_REGISTERED_CLASS(minkmetric, tensmetric)

	// other constructors
public:
	/** Construct Lorentz metric tensor with given signature. */
	minkmetric(bool pos_sig);

	// functions overriding virtual functions from base classes
public:
	bool info(unsigned inf) const;
	ex eval_indexed(const basic & i) const;

	/** Save (a.k.a. serialize) object into archive. */
	void archive(archive_node& n) const;
	/** Read (a.k.a. deserialize) object from archive. */
	void read_archive(const archive_node& n, lst& syms);
	// non-virtual functions in this class
protected:
	unsigned return_type() const { return return_types::commutative; }
	void do_print(const print_context & c, unsigned level) const;
	void do_print_latex(const print_latex & c, unsigned level) const;

	// member variables
private:
	bool pos_sig; /**< If true, the metric is diag(-1,1,1...). Otherwise it is diag(1,-1,-1,...). */
};
GINAC_DECLARE_UNARCHIVER(minkmetric); 


/** This class represents an antisymmetric spinor metric tensor which
 *  can be used to raise/lower indices of 2-component Weyl spinors. If
 *  indexed, it must have exactly two indices of the same type which
 *  must be of class spinidx or a subclass and have dimension 2. */
class spinmetric : public tensmetric
{
	GINAC_DECLARE_REGISTERED_CLASS(spinmetric, tensmetric)

	// functions overriding virtual functions from base classes
public:
	bool info(unsigned inf) const;
	ex eval_indexed(const basic & i) const;
	bool contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const;

protected:
	void do_print(const print_context & c, unsigned level) const;
	void do_print_latex(const print_latex & c, unsigned level) const;
};
GINAC_DECLARE_UNARCHIVER(spinmetric);


/** This class represents the totally antisymmetric epsilon tensor. If
 *  indexed, all indices must be of the same type and their number must
 *  be equal to the dimension of the index space. */
class tensepsilon : public tensor
{
	GINAC_DECLARE_REGISTERED_CLASS(tensepsilon, tensor)

	// other constructors
public:
	tensepsilon(bool minkowski, bool pos_sig);

	// functions overriding virtual functions from base classes
public:
	bool info(unsigned inf) const;
	ex eval_indexed(const basic & i) const;
	bool contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const;

	/** Save (a.k.a. serialize) object into archive. */
	void archive(archive_node& n) const;
	/** Read (a.k.a. deserialize) object from archive. */
	void read_archive(const archive_node& n, lst& syms);
	// non-virtual functions in this class
protected:
	unsigned return_type() const { return return_types::commutative; }
	void do_print(const print_context & c, unsigned level) const;
	void do_print_latex(const print_latex & c, unsigned level) const;

	// member variables
private:
	bool minkowski; /**< If true, tensor is in Minkowski-type space. Otherwise it is in a Euclidean space. */
	bool pos_sig;   /**< If true, the metric is assumed to be diag(-1,1,1...). Otherwise it is diag(1,-1,-1,...). This is only relevant if minkowski = true. */
};
GINAC_DECLARE_UNARCHIVER(tensepsilon); 


// utility functions

/** Create a delta tensor with specified indices. The indices must be of class
 *  idx or a subclass. The delta tensor is always symmetric and its trace is
 *  the dimension of the index space.
 *
 *  @param i1 First index
 *  @param i2 Second index
 *  @return newly constructed delta tensor */
ex delta_tensor(const ex & i1, const ex & i2);

/** Create a symmetric metric tensor with specified indices. The indices
 *  must be of class varidx or a subclass. A metric tensor with one
 *  covariant and one contravariant index is equivalent to the delta tensor.
 *
 *  @param i1 First index
 *  @param i2 Second index
 *  @return newly constructed metric tensor */
ex metric_tensor(const ex & i1, const ex & i2);

/** Create a Minkowski metric tensor with specified indices. The indices
 *  must be of class varidx or a subclass. The Lorentz metric is a symmetric
 *  tensor with a matrix representation of diag(1,-1,-1,...) (negative
 *  signature, the default) or diag(-1,1,1,...) (positive signature).
 *
 *  @param i1 First index
 *  @param i2 Second index
 *  @param pos_sig Whether the signature is positive
 *  @return newly constructed Lorentz metric tensor */
ex lorentz_g(const ex & i1, const ex & i2, bool pos_sig = false);

/** Create a spinor metric tensor with specified indices. The indices must be
 *  of class spinidx or a subclass and have a dimension of 2. The spinor
 *  metric is an antisymmetric tensor with a matrix representation of
 *  [[ [[ 0, 1 ]], [[ -1, 0 ]] ]].
 *
 *  @param i1 First index
 *  @param i2 Second index
 *  @return newly constructed spinor metric tensor */
ex spinor_metric(const ex & i1, const ex & i2);

/** Create an epsilon tensor in a Euclidean space with two indices. The
 *  indices must be of class idx or a subclass, and have a dimension of 2.
 *
 *  @param i1 First index
 *  @param i2 Second index
 *  @return newly constructed epsilon tensor */
ex epsilon_tensor(const ex & i1, const ex & i2);

/** Create an epsilon tensor in a Euclidean space with three indices. The
 *  indices must be of class idx or a subclass, and have a dimension of 3.
 *
 *  @param i1 First index
 *  @param i2 Second index
 *  @param i3 Third index
 *  @return newly constructed epsilon tensor */
ex epsilon_tensor(const ex & i1, const ex & i2, const ex & i3);

/** Create an epsilon tensor in a Minkowski space with four indices. The
 *  indices must be of class varidx or a subclass, and have a dimension of 4.
 *
 *  @param i1 First index
 *  @param i2 Second index
 *  @param i3 Third index
 *  @param i4 Fourth index
 *  @param pos_sig Whether the signature of the metric is positive
 *  @return newly constructed epsilon tensor */
ex lorentz_eps(const ex & i1, const ex & i2, const ex & i3, const ex & i4, bool pos_sig = false);

} // namespace GiNaC

#endif // ndef GINAC_TENSOR_H