/usr/include/givaro/givzpz32std.h is in libgivaro-dev 3.7.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 | // ==========================================================================
// $Source: /var/lib/cvs/Givaro/src/kernel/zpz/givzpz32std.h,v $
// Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Authors: T. Gautier
// $Id: givzpz32std.h,v 1.22 2011-02-04 14:11:46 jgdumas Exp $
// ==========================================================================
//
// Modified by Pascal Giorgi on 2002/02/13 (pascal.giorgi@ens-lyon.fr)
/*! @file givzpz32std.h
* @ingroup zpz
* @brief Arithmetic on \c Z/pZ, with p a prime number less than \f$2^32\f$.
* Modulo typedef is a signed long number. In case it was modified
* then Bézout algorithm must be changed (coefficient can be negative).
*/
#ifndef __GIVARO_zpz32std_H
#define __GIVARO_zpz32std_H
#include "givaro/givbasictype.h"
#include "givaro/giverror.h"
#include "givaro/givzpztypes.h"
#include "givaro/giv_randiter.h"
#include <math.h>
namespace Givaro {
/*! @brief This class implement the standard arithmetic with Modulo Elements.
* - The representation of an integer a in Zpz is the value a % p
* - p max is 46337
* .
*/
template<>
class ZpzDom<Std32> {
public:
// ----- Exported Types and constantes
typedef uint32_t Residu_t; // - type to store residue
enum { size_rep = sizeof(Residu_t) }; // - size of the storage type
// ----- Representation of Element of the domain ZpzDom
typedef int32_t Rep;
typedef int32_t Element;
// ----- Representation of vector of the Element
typedef Rep* Array;
typedef const Rep* constArray;
// ----- Constantes
const Rep zero;
const Rep one;
const Rep mOne;
// ----- Constructor
ZpzDom() :
zero(0), one(1), mOne(-1), _p(0), _dp(0.0) {}
ZpzDom( Residu_t p ) :
zero(0), one(1), mOne((Rep)p-1), _p(p), _dp((double)p) {}
ZpzDom( const ZpzDom<Std32>& F)
: zero(F.zero), one(F.one), mOne(F.mOne), _p(F._p), _dp(F._dp) {}
int operator==( const ZpzDom<Std32>& BC) const { return _p == BC._p;}
int operator!=( const ZpzDom<Std32>& BC) const { return _p != BC._p;}
ZpzDom<Std32>& operator=( const ZpzDom<Std32>& F)
{
F.assign(const_cast<Element&>(one),F.one);
F.assign(const_cast<Element&>(zero),F.zero);
F.assign(const_cast<Element&>(mOne),F.mOne);
this->_p = F._p;
this->_dp = F._dp;
return *this;
}
// ----- Access to the modulus
Residu_t residu() const;
Residu_t size() const {return _p;}
Rep access( const Rep a ) const { return a; }
Residu_t characteristic() const { return _p; }
Integer& characteristic( Integer& p) const { return p=_p; }
Residu_t cardinality() const { return _p; }
// ----- Access to the modulus
Rep& init( Rep& a ) const;
void init( const size_t, Array a, constArray b ) const;
Rep& init( Rep& r , const long a) const ;
Rep& init( Rep& r , const unsigned long a) const ;
Rep& init( Rep& a, const int i) const ;
Rep& init( Rep& a, const unsigned int i) const ;
Rep& init( Rep& a, const Integer& i) const ;
// Initialisation from double ( added for FFLAS usage) (C Pernet)
Rep& init( Rep& a, const double i) const;
Rep& init( Rep& a, const float i) const;
// Conversion to double ( added for FFLAS usage) (C Pernet)
float& convert(float& r, const Rep a ) const { return r = (float)a ;}
double& convert(double& r, const Rep a ) const { return r = (double)a ;}
long int& convert(long int& r, const Rep a) const { return r = (long int)a;}
unsigned long int& convert(unsigned long int& r, const Rep a) const { return r = (unsigned long int)a;}
int32_t& convert(int32_t& r, const Rep a ) const { return r = (int32_t)a ;}
uint32_t& convert(uint32_t& r, const Rep a ) const { return r = (uint32_t)a ;}
Integer& convert(Integer& i, const Rep a) const {
unsigned long ur;
return i = (Integer)convert(ur, a);
}
// ----- Misc methods
int isZero( const Rep a ) const;
int isOne ( const Rep a ) const;
size_t length ( const Rep a ) const;
// ----- Equality between two Elements
int areEqual(const Rep& a, const Rep& b) const { return a==b;}
// ----- Operations with reduction: r <- a op b mod p, r <- op a mod p
Rep& mul (Rep& r, const Rep a, const Rep b) const;
Rep& div (Rep& r, const Rep a, const Rep b) const;
Rep& add (Rep& r, const Rep a, const Rep b) const;
Rep& sub (Rep& r, const Rep a, const Rep b) const;
Rep& neg (Rep& r, const Rep a) const;
Rep& inv (Rep& r, const Rep a) const;
Rep& mulin (Rep& r, const Rep a) const;
Rep& divin (Rep& r, const Rep a) const;
Rep& addin (Rep& r, const Rep a) const;
Rep& subin (Rep& r, const Rep a) const;
Rep& negin (Rep& r) const;
Rep& invin (Rep& r) const;
// ----- Operations with reduction: r <- a op b mod p, r <- op a mod p
void mul (const size_t sz, Array r, constArray a, constArray b) const;
void mul (const size_t sz, Array r, constArray a, Rep b) const;
void div (const size_t sz, Array r, constArray a, constArray b) const;
void div (const size_t sz, Array r, constArray a, Rep b) const;
void add (const size_t sz, Array r, constArray a, constArray b) const;
void add (const size_t sz, Array r, constArray a, Rep b) const;
void sub (const size_t sz, Array r, constArray a, constArray b) const;
void sub (const size_t sz, Array r, constArray a, Rep b) const;
void neg (const size_t sz, Array r, constArray a) const;
void inv (const size_t sz, Array r, constArray a) const;
// -- axpy: r <- a * x + y mod p
Rep& axpy (Rep& r, const Rep a, const Rep b, const Rep c) const;
void axpy (const size_t sz, Array r, constArray a, constArray x, constArray c) const;
// -- axpyin: r <- r + a * x mod p
Rep& axpyin(Rep& r, const Rep a, const Rep b) const;
void axpyin (const size_t sz, Array r, constArray a, constArray x) const;
// -- maxpy: r <- c - a * b mod p
Rep& maxpy (Rep& r, const Rep a, const Rep b, const Rep c) const;
// -- maxpyin: r <- r - a * b mod p
Rep& maxpyin(Rep& r, const Rep a, const Rep b) const;
void maxpyin (const size_t sz, Array r, constArray a, constArray x) const;
// -- axmy: r <- a * x - y mod p
Rep& axmy (Rep& r, const Rep a, const Rep b, const Rep c) const;
void axmy (const size_t sz, Array r, constArray a, constArray x, constArray c) const;
// -- axmyin: r <- a * x - r mod p
Rep& axmyin(Rep& r, const Rep a, const Rep b) const;
// void axmyin (const size_t sz, Array r, constArray a, constArray x) const;
// -- Misc: r <- a mod p
void assign ( const size_t sz, Array r, constArray a ) const;
Rep& assign ( Rep& r, const Rep a) const;
// ----- random generators
// Rep& NONZEROGIVRANDOM(Rep&) const ;
// Rep& GIVRANDOM(Rep&) const ;
template< class RandIter > Rep& random(RandIter&, Rep& r) const ;
template< class RandIter > Rep& random(RandIter&, Rep& r, long s) const ;
template< class RandIter > Rep& random(RandIter&, Rep& r, const Rep& b) const ;
template< class RandIter > Rep& nonzerorandom(RandIter&, Rep& r) const ;
template< class RandIter > Rep& nonzerorandom(RandIter&, Rep& r, long s) const ;
template< class RandIter > Rep& nonzerorandom(RandIter&, Rep& r, const Rep& b) const ;
typedef GIV_randIter< ZpzDom<Std32> , Rep > randIter;
// <- \sum_i a[i], return 1 if a.size() ==0,
Rep& reduceadd ( Rep& r, const size_t sz, constArray a ) const;
// <- \prod_i a[i], return 1 if a.size() ==0,
Rep& reducemul ( Rep& r, const size_t sz, constArray a ) const;
// <- \sum_i a[i] * b[i]
Rep& dotprod ( Rep& r, const size_t sz, constArray a, constArray b ) const;
Rep& dotprod ( Rep& r, const int bound, const size_t sz, constArray a, constArray b ) const;
// ----- a -> r: uint32_t to double
void i2d ( const size_t sz, double* r, constArray a ) const;
// ----- a -> r % p: double to uint32_t % p
void d2i ( const size_t sz, Array r, const double* a ) const;
// --- IO methods
std::istream& read ( std::istream& s );
std::ostream& write( std::ostream& s ) const;
std::istream& read ( std::istream& s, Rep& a ) const;
std::ostream& write( std::ostream& s, const Rep a ) const;
protected:
// -- based for modular inverse, d = a*u + b*v
// static const int32_t gcdext ( int32_t& u, int32_t& v, const int32_t a, const int32_t b );
int32_t& gcdext (int32_t& d, int32_t& u, int32_t& v, const int32_t a, const int32_t b ) const;
int32_t& invext (int32_t& u, const int32_t a, const int32_t b ) const;
protected:
// -- data representation of the domain:
Residu_t _p;
double _dp;
static void Init();
static void End();
};
} // namespace Givaro
#include "givaro/givzpz32std.inl"
#endif // __GIVARO_zpz32std_H
// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s
|