This file is indexed.

/usr/include/givaro/givzpz32std.h is in libgivaro-dev 3.7.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
// ==========================================================================
// $Source: /var/lib/cvs/Givaro/src/kernel/zpz/givzpz32std.h,v $
// Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Authors: T. Gautier
// $Id: givzpz32std.h,v 1.22 2011-02-04 14:11:46 jgdumas Exp $
// ==========================================================================
//
//  Modified by Pascal Giorgi on 2002/02/13  (pascal.giorgi@ens-lyon.fr)

/*! @file givzpz32std.h
 * @ingroup zpz
 * @brief Arithmetic on \c Z/pZ, with p a prime number less than \f$2^32\f$.
 *   Modulo typedef is a signed long number. In case it was modified
 *   then Bézout algorithm must be changed (coefficient can be negative).
 */

#ifndef __GIVARO_zpz32std_H
#define __GIVARO_zpz32std_H


#include "givaro/givbasictype.h"
#include "givaro/giverror.h"
#include "givaro/givzpztypes.h"
#include "givaro/giv_randiter.h"
#include <math.h>


namespace Givaro {

/*! @brief This class implement the standard arithmetic with Modulo Elements.
 * - The representation of an integer a in Zpz is the value a % p
 * - p max is 46337
 * .
 */
template<>
class ZpzDom<Std32> {
public:
  // ----- Exported Types and constantes
  typedef uint32_t Residu_t;                    // - type to store residue
  enum { size_rep = sizeof(Residu_t) };      // - size of the storage type
  // ----- Representation of Element of the domain ZpzDom
  typedef int32_t Rep;
  typedef int32_t Element;

  // ----- Representation of vector of the Element
  typedef Rep* Array;
  typedef const Rep* constArray;

  // ----- Constantes
  const Rep zero;
  const Rep one;
  const Rep mOne;

  // ----- Constructor
  ZpzDom() :
	  zero(0), one(1), mOne(-1), _p(0), _dp(0.0) {}

  ZpzDom( Residu_t p ) :
	  zero(0), one(1), mOne((Rep)p-1), _p(p), _dp((double)p) {}

  ZpzDom( const ZpzDom<Std32>& F)
	  : zero(F.zero), one(F.one), mOne(F.mOne), _p(F._p), _dp(F._dp) {}




  int operator==( const ZpzDom<Std32>& BC) const { return _p == BC._p;}
  int operator!=( const ZpzDom<Std32>& BC) const { return _p != BC._p;}

  ZpzDom<Std32>& operator=( const ZpzDom<Std32>& F)
  {
	  F.assign(const_cast<Element&>(one),F.one);
	  F.assign(const_cast<Element&>(zero),F.zero);
	  F.assign(const_cast<Element&>(mOne),F.mOne);

	  this->_p = F._p;
	  this->_dp = F._dp;
	  return *this;
  }

  // ----- Access to the modulus
  Residu_t residu() const;
  Residu_t size() const {return _p;}
  Rep access( const Rep a ) const { return a; }
  Residu_t characteristic() const { return _p; }
  Integer& characteristic( Integer& p) const { return p=_p; }
  Residu_t cardinality() const { return _p; }


  // ----- Access to the modulus
  Rep& init( Rep& a ) const;
  void init( const size_t, Array a, constArray b ) const;
  Rep& init( Rep& r , const long a) const ;
  Rep& init( Rep& r , const unsigned long a) const ;
  Rep& init( Rep& a, const int i) const ;
  Rep& init( Rep& a, const unsigned int i) const ;
  Rep& init( Rep& a, const Integer& i) const ;


  // Initialisation from double ( added for FFLAS usage) (C Pernet)
  Rep& init( Rep& a, const double i) const;
  Rep& init( Rep& a, const float i) const;
  // Conversion to double ( added for FFLAS usage) (C Pernet)
  float& convert(float& r, const Rep a ) const { return r = (float)a ;}
  double& convert(double& r, const Rep a ) const { return r = (double)a ;}
  long int& convert(long int& r, const Rep a) const { return r = (long int)a;}
  unsigned long int& convert(unsigned long int& r, const Rep a) const { return r = (unsigned long int)a;}
    int32_t& convert(int32_t& r, const Rep a ) const { return r = (int32_t)a ;}
    uint32_t& convert(uint32_t& r, const Rep a ) const { return r = (uint32_t)a ;}
    Integer& convert(Integer& i, const Rep a) const {
        unsigned long ur;
        return i = (Integer)convert(ur, a);
    }

  // ----- Misc methods
  int isZero( const Rep a ) const;
  int isOne ( const Rep a ) const;
  size_t length ( const Rep a ) const;

  // ----- Equality between two Elements
  int areEqual(const  Rep& a, const Rep& b) const { return a==b;}

  // ----- Operations with reduction: r <- a op b mod p, r <- op a mod p
  Rep& mul (Rep& r, const Rep a, const Rep b) const;
  Rep& div (Rep& r, const Rep a, const Rep b) const;
  Rep& add (Rep& r, const Rep a, const Rep b) const;
  Rep& sub (Rep& r, const Rep a, const Rep b) const;
  Rep& neg (Rep& r, const Rep a) const;
  Rep& inv (Rep& r, const Rep a) const;

  Rep& mulin (Rep& r, const Rep a) const;
  Rep& divin (Rep& r, const Rep a) const;
  Rep& addin (Rep& r, const Rep a) const;
  Rep& subin (Rep& r, const Rep a) const;
  Rep& negin (Rep& r) const;
  Rep& invin (Rep& r) const;

  // ----- Operations with reduction: r <- a op b mod p, r <- op a mod p
  void mul (const size_t sz, Array r, constArray a, constArray b) const;
  void mul (const size_t sz, Array r, constArray a, Rep b) const;

  void div (const size_t sz, Array r, constArray a, constArray b) const;
  void div (const size_t sz, Array r, constArray a, Rep b) const;

  void add (const size_t sz, Array r, constArray a, constArray b) const;
  void add (const size_t sz, Array r, constArray a, Rep b) const;

  void sub (const size_t sz, Array r, constArray a, constArray b) const;
  void sub (const size_t sz, Array r, constArray a, Rep b) const;

  void neg (const size_t sz, Array r, constArray a) const;
  void inv (const size_t sz, Array r, constArray a) const;

  // -- axpy: r <- a * x + y mod p
  Rep& axpy  (Rep& r, const Rep a, const Rep b, const Rep c) const;
  void axpy (const size_t sz, Array r, constArray a, constArray x, constArray c) const;
  // -- axpyin: r <- r + a * x mod p
  Rep& axpyin(Rep& r, const Rep a, const Rep b) const;
  void axpyin (const size_t sz, Array r, constArray a, constArray x) const;

  // -- maxpy: r <- c - a * b mod p
  Rep& maxpy (Rep& r, const Rep a, const Rep b, const Rep c) const;
  // -- maxpyin: r <- r - a * b mod p
  Rep& maxpyin(Rep& r, const Rep a, const Rep b) const;
  void maxpyin (const size_t sz, Array r, constArray a, constArray x) const;

  // -- axmy: r <- a * x - y mod p
  Rep& axmy  (Rep& r, const Rep a, const Rep b, const Rep c) const;
  void axmy (const size_t sz, Array r, constArray a, constArray x, constArray c) const;
  // -- axmyin: r <- a * x - r mod p
  Rep& axmyin(Rep& r, const Rep a, const Rep b) const;
  // void axmyin (const size_t sz, Array r, constArray a, constArray x) const;

  // -- Misc: r <- a mod p
  void assign ( const size_t sz, Array r, constArray a ) const;
  Rep& assign ( Rep& r, const Rep a) const;
   // ----- random generators
//     Rep& NONZEROGIVRANDOM(Rep&) const ;
//     Rep& GIVRANDOM(Rep&) const ;
    template< class RandIter > Rep& random(RandIter&, Rep& r) const ;
    template< class RandIter > Rep& random(RandIter&, Rep& r, long s) const ;
    template< class RandIter > Rep& random(RandIter&, Rep& r, const Rep& b) const ;
    template< class RandIter > Rep& nonzerorandom(RandIter&, Rep& r) const ;
    template< class RandIter > Rep& nonzerorandom(RandIter&, Rep& r, long s) const ;
    template< class RandIter > Rep& nonzerorandom(RandIter&, Rep& r, const Rep& b) const ;

    typedef GIV_randIter< ZpzDom<Std32> , Rep > randIter;

  // <- \sum_i a[i], return 1 if a.size() ==0,
  Rep& reduceadd ( Rep& r, const size_t sz, constArray a ) const;

  // <- \prod_i a[i], return 1 if a.size() ==0,
  Rep& reducemul ( Rep& r, const size_t sz, constArray a ) const;

  // <- \sum_i a[i] * b[i]
  Rep& dotprod ( Rep& r, const size_t sz, constArray a, constArray b ) const;
  Rep& dotprod ( Rep& r, const int bound, const size_t sz, constArray a, constArray b ) const;

  // ----- a -> r: uint32_t to double
  void i2d ( const size_t sz, double* r, constArray a ) const;

  // ----- a -> r % p: double to uint32_t % p
  void d2i ( const size_t sz, Array r, const double* a ) const;

  // --- IO methods
  std::istream& read ( std::istream& s );
  std::ostream& write( std::ostream& s ) const;
  std::istream& read ( std::istream& s, Rep& a ) const;
  std::ostream& write( std::ostream& s, const Rep a ) const;

protected:
  // -- based for modular inverse, d = a*u + b*v
//   static const int32_t gcdext ( int32_t& u, int32_t& v, const int32_t a, const int32_t b );
  int32_t& gcdext (int32_t& d, int32_t& u, int32_t& v, const int32_t a, const int32_t b ) const;
  int32_t& invext (int32_t& u, const int32_t a, const int32_t b ) const;

protected:
  // -- data representation of the domain:
    Residu_t _p;
    double _dp;

    static void Init();
    static void End();
};

} // namespace Givaro


#include "givaro/givzpz32std.inl"

#endif // __GIVARO_zpz32std_H

// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s