This file is indexed.

/usr/share/ada/adainclude/gmpada/gnu_multiple_precision-big_integers.adb is in libgmpada4-dev 0.0.20131223-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
--    GMPAda, binding to the Ada Language for the GNU MultiPrecision library.
--    Copyright (C) 2007-2010 Nicolas Boulenguez <nicolas.boulenguez@free.fr>
--
--    This program is free software: you can redistribute it and/or modify
--    it under the terms of the GNU General Public License as published by
--    the Free Software Foundation, either version 3 of the License, or
--    (at your option) any later version.
--
--    This program is distributed in the hope that it will be useful,
--    but WITHOUT ANY WARRANTY; without even the implied warranty of
--    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--    GNU General Public License for more details.
--
--    You should have received a copy of the GNU General Public License
--    along with this program.  If not, see <http://www.gnu.org/licenses/>.

with Ada.Unchecked_Conversion;
with Ada.Characters.Conversions;
with Interfaces.C; use Interfaces.C;
with GMP.Binding; use GMP.Binding;
with GNU_Multiple_Precision.Aux;

package body GNU_Multiple_Precision.Big_Integers is

   function "<"  (Left, Right : Big_Integer) return Boolean
   is
   begin
      return Mpz_Cmp (Left.Value, Right.Value) < 0;
   end "<";

   function "<=" (Left, Right : Big_Integer) return Boolean
   is
   begin
      return Mpz_Cmp (Left.Value, Right.Value) <= 0;
   end "<=";

   function ">"  (Left, Right : Big_Integer) return Boolean
   is
   begin
      return Mpz_Cmp (Left.Value, Right.Value) > 0;
   end ">";

   function ">=" (Left, Right : Big_Integer) return Boolean
   is
   begin
      return Mpz_Cmp (Left.Value, Right.Value) >= 0;
   end ">=";

   function "+" (Right : in Big_Integer) return Big_Integer
   is
   begin
      return Result : Big_Integer do
         Set (Result, Right);
      end return;
   end "+";

   function "-" (Right : in Big_Integer) return Big_Integer
   is
   begin
      return Result : Big_Integer do
         Negate (Result, Right);
      end return;
   end "-";

   function "abs" (Right : in Big_Integer) return Big_Integer
   is
   begin
      return Result : Big_Integer do
         Absolute_Value (Result, Right);
      end return;
   end "abs";

   function "+" (Left, Right : in Big_Integer) return Big_Integer
   is
   begin
      return Result : Big_Integer do
         Add (Result, Left, Right);
      end return;
   end "+";

   function "-" (Left, Right : in Big_Integer) return Big_Integer
   is
   begin
      return Result : Big_Integer do
         Subtract (Result, Left, Right);
      end return;
   end "-";

   function "*" (Left, Right : in Big_Integer) return Big_Integer
   is
   begin
      return Result : Big_Integer do
         Multiply (Result, Left, Right);
      end return;
   end "*";

   function "/" (Left, Right : in Big_Integer) return Big_Integer
   is
   begin
      return Result : Big_Integer do
         Divide (Result, Left, Right, Truncate);
      end return;
   end "/";

   function "**"  (Left  : in Big_Integer;
                   Right : in Natural)
                  return Big_Integer
   is
   begin
      return Result : Big_Integer do
         Exponentiate (Result, Left, Right);
      end return;
   end "**";

   function "rem" (Left, Right : in Big_Integer) return Big_Integer
   is
   begin
      return Result : Big_Integer do
         Remainder (Result, Left, Right, Truncate);
      end return;
   end "rem";

   function "mod" (Left, Right : in Big_Integer) return Big_Integer
   is
   begin
      return Result : Big_Integer do
         Remainder (Result, Left, Right, Floor);
      end return;
   end "mod";

   function Max (Left, Right : Big_Integer) return Big_Integer
   is
   begin
      if Mpz_Cmp (Left.Value, Right.Value) <= 0 then
         return Right;
      else
         return Left;
      end if;
   end Max;

   function Min (Left, Right : Big_Integer) return Big_Integer
   is
   begin
      if Mpz_Cmp (Left.Value, Right.Value) >= 0 then
         return Right;
      else
         return Left;
      end if;
   end Min;

   function Pred (Arg : Big_Integer) return Big_Integer
   is
   begin
      return Result : Big_Integer do
         Mpz_Sub_Ui (Result.Value, Arg.Value, 1);
      end return;
   end Pred;

   function Succ (Arg : Big_Integer) return Big_Integer
   is
   begin
      return Result : Big_Integer do
         Mpz_Add_Ui (Result.Value, Arg.Value, 1);
      end return;
   end Succ;

   function Image (Item : Big_Integer) return String
   is
      Result : String (1 .. Integer (Mpz_Sizeinbase (Item.Value, 10)) + 2);
      Last   : Natural := Result'First - 1;
      procedure Put_Character (C : in Character);
      procedure Put_Character (C : in Character) is
      begin
         Last := Last + 1;
         Result (Last) := C;
      end Put_Character;
   begin
      if Mpz_Sgn (Item.Value) >= 0 then
         Put_Character (' ');
      end if;
      GNU_Multiple_Precision.Aux.Put (Put_Character'Access, Item.Value, 0, 10);
      return Result (Result'First .. Last);
   end Image;

   function Wide_Image (Item : Big_Integer) return Wide_String
   is
   begin
      return Ada.Characters.Conversions.To_Wide_String (Image (Item));
   end Wide_Image;

   function Wide_Wide_Image (Item : Big_Integer) return Wide_Wide_String
   is
   begin
      return Ada.Characters.Conversions.To_Wide_Wide_String (Image (Item));
   end Wide_Wide_Image;

   function Value (Item : String) return Big_Integer
   is
      --  We need to detect Ada-style base and exponents.
      --  So impossible to call mpz_get_str directly.
      use GNU_Multiple_Precision.Aux;
      Last : Natural := Item'First;
      Next : Character;          --  = Item (Last - 1) in normal cases
      procedure Consume;
      procedure Consume is
      begin
         if Last <= Item'Last then
            Next := Item (Last);
         else
            pragma Assert (Last = Item'Last + 1);
            Next := Unused_Character;
         end if;
         Last := Last + 1;
      end Consume;
      package Scan is new Generic_Scan (Next, Consume);
   begin
      Consume;
      return Result : Big_Integer do
         Scan.Get_Mpz_T (Result.Value, Item'Length);
         for I in Last + 1 .. Item'Last loop
            if Item (I) /= ' ' and Item (I) /= ASCII.HT then
               raise Constraint_Error;
            end if;
         end loop;
      end return;
   exception
      when others => raise Constraint_Error;
   end Value;

   function Wide_Value (Item : Wide_String) return Big_Integer
   is
      --  This replacement character will cause an error in Value.
   begin
      return Value (Ada.Characters.Conversions.To_String (Item, 'z'));
   end Wide_Value;

   function Wide_Wide_Value (Item : Wide_Wide_String) return Big_Integer
   is
      --  This replacement character will cause an error in Value.
   begin
      return Value (Ada.Characters.Conversions.To_String (Item, 'z'));
   end Wide_Wide_Value;

   function "and"  (Left, Right : Big_Integer) return Big_Integer
   is
   begin
      return Result : Big_Integer do
         Logical_And (Result, Left, Right);
      end return;
   end "and";

   function "or"  (Left, Right : Big_Integer) return Big_Integer
   is
   begin
      return Result : Big_Integer do
         Logical_Or (Result, Left, Right);
      end return;
   end "or";

   function "xor"  (Left, Right : Big_Integer) return Big_Integer
   is
   begin
      return Result : Big_Integer do
         Logical_Xor (Result, Left, Right);
      end return;
   end "xor";

   procedure Reallocate
     (Object    : in out Big_Integer;
      New_Space : in     Bit_Count)
   is
   begin
      Mpz_Realloc2 (Object.Value, New_Space);
   end Reallocate;

   procedure Set
     (Rop : in out Big_Integer;
      Op  : in     Big_Integer)
   is
   begin
      Mpz_Set (Rop.Value, Op.Value);
   end Set;

   package body Integer_Conversions is

      procedure Set (Rop : in out Big_Integer;
                     Op  : in     Num)
      is
      begin
         Mpz_Set_Si (Rop.Value, long (Op));
      end Set;

      function To_Big_Integer (Item : Num) return Big_Integer
      is
      begin
         return Result : Big_Integer do
            Mpz_Set_Si (Result.Value, long (Item));
         end return;
      end To_Big_Integer;

      function Fits_In_Num (Item : Big_Integer) return Boolean
      is
      begin
         return Mpz_Cmp_Si (Item.Value, long (Num'First)) >= 0
           and Mpz_Cmp_Si (Item.Value, long (Num'Last)) <= 0;
      end Fits_In_Num;

      function To_Num (Item : Big_Integer) return Num
      is
      begin
         if Mpz_Fits_Slong_P (Item.Value) = 0 then
            raise Constraint_Error;
         end if;
         return Num (Mpz_Get_Si (Item.Value));
      end To_Num;

   end Integer_Conversions;

   package body Modular_Conversions is

      procedure Set (Rop : in out Big_Integer;
                     Op  : in     Num)
      is
      begin
         Mpz_Set_Ui (Rop.Value, unsigned_long (Op));
      end Set;

      function To_Big_Integer (Item : Num) return Big_Integer
      is
      begin
         return Result : Big_Integer do
            Mpz_Set_Ui (Result.Value, unsigned_long (Item));
         end return;
      end To_Big_Integer;

      function Fits_In_Num (Item : Big_Integer) return Boolean
      is
      begin
         return Mpz_Cmp_Ui (Item.Value, unsigned_long (Num'First)) >= 0
           and Mpz_Cmp_Ui (Item.Value, unsigned_long (Num'Last)) <= 0;
      end Fits_In_Num;

      function To_Num (Item : Big_Integer) return Num
      is
      begin
         if Mpz_Fits_Ulong_P (Item.Value) = 0 then
            raise Constraint_Error;
         end if;
         return Num (Mpz_Get_Ui (Item.Value));
      end To_Num;

   end Modular_Conversions;

   package body Float_Conversions is

      procedure Set (Rop : in out Big_Integer;
                     Op  : in     Num)
      is
      begin
         Mpz_Set_D (Rop.Value, double (Op));
      end Set;

      function To_Big_Integer (Item : Num) return Big_Integer
      is
      begin
         return Result : Big_Integer do
            Mpz_Set_D (Result.Value, double (Item));
         end return;
      end To_Big_Integer;

      function Fits_In_Num (Item : Big_Integer) return Boolean
      is
      begin
         return Mpz_Cmp_D (Item.Value, double (Num'First)) >= 0
           and Mpz_Cmp_D (Item.Value, double (Num'Last)) <= 0;
      end Fits_In_Num;

      function To_Num (Item : Big_Integer) return Num
      is
      begin
         if Mpz_Fits_Ulong_P (Item.Value) = 0 then
            raise Constraint_Error;
         end if;
         return Num (Mpz_Get_D (Item.Value));
      end To_Num;

      procedure Split_Mantissa_Exponent
        (Mantissa :    out Num;
         Exponent :    out Integer;
         Op       : in     Big_Integer)
      is
         Temp_M : double;
         Temp_E : long;
      begin
         Mpz_Get_D_2exp (Temp_M, Temp_E, Op.Value);
         Mantissa := Num (Temp_M);
         Exponent := Integer (Temp_E);
      end Split_Mantissa_Exponent;

   end Float_Conversions;

   procedure Swap (Rop1, Rop2 : in out Big_Integer)
   is
   begin
      Mpz_Swap (Rop1.Value, Rop2.Value);
   end Swap;

   procedure Add (Sum              : in out Big_Integer;
                  Addend1, Addend2 : in     Big_Integer)
   is
   begin
      Mpz_Add (Sum.Value, Addend1.Value, Addend2.Value);
   end Add;

   procedure Subtract (Difference          : in out Big_Integer;
                       Minuend, Subtrahend : in     Big_Integer)
   is
   begin
      Mpz_Sub (Difference.Value, Minuend.Value, Subtrahend.Value);
   end Subtract;

   procedure Multiply (Product                  : in out Big_Integer;
                       Multiplier, Multiplicand : in     Big_Integer)
   is
   begin
      Mpz_Mul (Product.Value, Multiplier.Value, Multiplicand.Value);
   end Multiply;

   procedure Add_A_Product (Rop      : in out Big_Integer;
                            Op1, Op2 : in     Big_Integer)
   is
   begin
      Mpz_Addmul (Rop.Value, Op1.Value, Op2.Value);
   end Add_A_Product;

   procedure Subtract_A_Product (Rop      : in out Big_Integer;
                                 Op1, Op2 : in     Big_Integer)
   is
   begin
      Mpz_Submul (Rop.Value, Op1.Value, Op2.Value);
   end Subtract_A_Product;

   procedure Negate (Negated_Operand : in out Big_Integer;
                     Operand         : in     Big_Integer)
   is
   begin
      Mpz_Neg (Negated_Operand.Value, Operand.Value);
   end Negate;

   procedure Absolute_Value (Rop : in out Big_Integer;
                             Op  : in     Big_Integer)
   is
   begin
      Mpz_Abs (Rop.Value, Op.Value);
   end Absolute_Value;

   procedure Multiply_2_Exp (Rop : in out Big_Integer;
                             Op1 : in     Big_Integer;
                             Op2 : in     Bit_Count)
   is
   begin
      Mpz_Mul_2exp (Rop.Value, Op1.Value, Op2);
   end Multiply_2_Exp;

   procedure Divide (Q     : in out Big_Integer;
                     N, D  : in     Big_Integer;
                     Style : in     Division_Style := Truncate)
   is
   begin
      if Mpz_Cmp_Ui (D.Value, 0) = 0 then
         raise Constraint_Error;
      end if;
      case Style is
         when Floor    => Mpz_Fdiv_Q (Q.Value, N.Value, D.Value);
         when Ceil     => Mpz_Cdiv_Q (Q.Value, N.Value, D.Value);
         when Truncate => Mpz_Tdiv_Q (Q.Value, N.Value, D.Value);
      end case;
   end Divide;

   procedure Remainder (R     : in out Big_Integer;
                        N, D  : in     Big_Integer;
                        Style : in     Division_Style := Truncate)
   is
   begin
      if Mpz_Cmp_Ui (D.Value, 0) = 0 then
         raise Constraint_Error;
      end if;
      case Style is
         when Floor    => Mpz_Fdiv_R (R.Value, N.Value, D.Value);
         when Ceil     => Mpz_Cdiv_R (R.Value, N.Value, D.Value);
         when Truncate => Mpz_Tdiv_R (R.Value, N.Value, D.Value);
      end case;
   end Remainder;

   procedure Divide (Q, R  : in out Big_Integer;
                     N, D  : in     Big_Integer;
                     Style : in     Division_Style := Truncate)
   is
   begin
      if Mpz_Cmp_Ui (D.Value, 0) = 0 then
         raise Constraint_Error;
      end if;
      case Style is
         when Floor    => Mpz_Fdiv_QR (Q.Value, R.Value, N.Value, D.Value);
         when Ceil     => Mpz_Cdiv_QR (Q.Value, R.Value, N.Value, D.Value);
         when Truncate => Mpz_Tdiv_QR (Q.Value, R.Value, N.Value, D.Value);
      end case;
   end Divide;

   procedure Divide_2_Exp
     (Q     : in out Big_Integer;
      N     : in     Big_Integer;
      B     : in     Bit_Count;
      Style : in     Division_Style := Truncate)
   is
   begin
      case Style is
         when Floor    => Mpz_Fdiv_Q_2exp (Q.Value, N.Value, B);
         when Ceil     => Mpz_Cdiv_Q_2exp (Q.Value, N.Value, B);
         when Truncate => Mpz_Tdiv_Q_2exp (Q.Value, N.Value, B);
      end case;
   end Divide_2_Exp;

   procedure Remainder_2_Exp
     (R     : in out Big_Integer;
      N     : in     Big_Integer;
      B     : in     Bit_Count;
      Style : in     Division_Style := Truncate)
   is
   begin
      case Style is
         when Floor    => Mpz_Fdiv_R_2exp (R.Value, N.Value, B);
         when Ceil     => Mpz_Cdiv_R_2exp (R.Value, N.Value, B);
         when Truncate => Mpz_Tdiv_R_2exp (R.Value, N.Value, B);
      end case;
   end Remainder_2_Exp;

   procedure Modulo
     (R    : in out Big_Integer;
      N, D : in     Big_Integer)
   is
   begin
      if Mpz_Cmp_Ui (D.Value, 0) = 0 then
         raise Constraint_Error;
      end if;
      Mpz_Mod (R.Value, N.Value, D.Value);
   end Modulo;

   procedure Divide_Exactly (Q    : in out Big_Integer;
                             N, D : in     Big_Integer)
   is
   begin
      Mpz_Divexact (Q.Value, N.Value, D.Value);
   end Divide_Exactly;

   function Is_Divisible (N, D : in Big_Integer) return Boolean
   is
   begin
      return Mpz_Divisible_P (N.Value, D.Value) /= 0;
   end Is_Divisible;

   function Is_Divisible_2_Exp (N : Big_Integer;
                                B : Bit_Count) return Boolean
   is
   begin
      return Mpz_Divisible_2exp_P (N.Value, B) /= 0;
   end Is_Divisible_2_Exp;

   function Is_Congruent (N, C, Modulo : in Big_Integer) return Boolean
   is
   begin
      return Mpz_Congruent_P (N.Value, C.Value, Modulo.Value) /= 0;
   end Is_Congruent;

   function Is_Congruent_2_Exp (N, C : Big_Integer;
                                B    : Bit_Count) return Boolean
   is
   begin
      return Mpz_Congruent_2exp_P (N.Value, C.Value, B) /= 0;
   end Is_Congruent_2_Exp;

   procedure Exponentiate (Rop                    : in out Big_Integer;
                           Base, Exponent, Modulo : in     Big_Integer)
   is
   begin
      Mpz_Powm (Rop.Value, Base.Value, Exponent.Value, Modulo.Value);
   end Exponentiate;

   procedure Exponentiate (Rop      : in out Big_Integer;
                           Base     : in     Big_Integer;
                           Exponent : in     Natural)
   is
   begin
      Mpz_Pow_Ui (Rop.Value, Base.Value, unsigned_long (Exponent));
   end Exponentiate;

   procedure Root (Rop            : in out Big_Integer;
                   Is_Exact_Power :    out Boolean;
                   Op             : in     Big_Integer;
                   N              : in     Natural)
   is
      Return_Value : int;
   begin
      Mpz_Root (Return_Value, Rop.Value, Op.Value, unsigned_long (N));
      Is_Exact_Power := Return_Value /= 0;
   end Root;

   procedure Root_Remainder (Root, Remainder : in out Big_Integer;
                             U               : in     Big_Integer;
                             N               : in     Natural)
   is
   begin
      Mpz_Rootrem (Root.Value, Remainder.Value, U.Value, unsigned_long (N));
   end Root_Remainder;

   procedure Square_Root
     (Root : in out Big_Integer;
      U    : in     Big_Integer)
   is
   begin
      Mpz_Sqrt (Root.Value, U.Value);
   end Square_Root;

   procedure Square_Root_Remainder
     (Root, Remainder : in out Big_Integer;
      U               : in     Big_Integer)
   is
   begin
      Mpz_Sqrtrem (Root.Value, Remainder.Value, U.Value);
   end Square_Root_Remainder;

   function Is_Perfect_Power (Op : Big_Integer) return Boolean
   is
   begin
      return Mpz_Perfect_Power_P (Op.Value) /= 0;
   end Is_Perfect_Power;

   function Is_Perfect_Square (Op : Big_Integer) return Boolean
   is
   begin
      return Mpz_Perfect_Square_P (Op.Value) /= 0;
   end Is_Perfect_Square;

   function Probably_Prime (N          : in Big_Integer;
                            Test_Count : in Positive)
                           return Prime_Status
   is
      function I2p is
         new Ada.Unchecked_Conversion (int, Prime_Status);
   begin
      return Result : constant Prime_Status
        := I2p (Mpz_Probab_Prime_P (N.Value, int (Test_Count)))
      do
         pragma Assert (Result'Valid);
         null;
      end return;
   end Probably_Prime;

   procedure Next_Prime
     (Rop : in out Big_Integer;
      Op  : in     Big_Integer)
   is
   begin
      Mpz_Nextprime (Rop.Value, Op.Value);
   end Next_Prime;

   procedure Greatest_Common_Divisor (G    : in out Big_Integer;
                                      A, B : in     Big_Integer)
   is
   begin
      Mpz_Gcd (G.Value, A.Value, B.Value);
   end Greatest_Common_Divisor;

   procedure Greatest_Common_Divisor (G, S : in out Big_Integer;
                                      A, B : in     Big_Integer)
   is
   begin
      Mpz_Gcdext (G.Value, S.Value, null, A.Value, B.Value);
   end Greatest_Common_Divisor;

   procedure Greatest_Common_Divisor (G, S, T : in out Big_Integer;
                                      A, B    : in     Big_Integer)
   is
   begin
      Mpz_Gcdext (G.Value, S.Value, T.Value, A.Value, B.Value);
   end Greatest_Common_Divisor;

   procedure Least_Common_Multiple (Rop      : in out Big_Integer;
                                    Op1, Op2 : in     Big_Integer)
   is
   begin
      Mpz_Lcm (Rop.Value, Op1.Value, Op2.Value);
   end Least_Common_Multiple;

   procedure Invert (Exists     :    out Boolean;
                     Rop        : in out Big_Integer;
                     Op, Modulo : in     Big_Integer)
   is
      Result : int;
   begin
      Mpz_Invert (Result, Rop.Value, Op.Value, Modulo.Value);
      Exists := Result /= 0;
   end Invert;

   function Jacobi    (A, B : Big_Integer) return Integer
   is
   begin
      return Integer (Mpz_Jacobi (A.Value, B.Value));
   end Jacobi;

   function Legendre  (A, P : Big_Integer) return Integer
   is
   begin
      return Integer (Mpz_Legendre (A.Value, P.Value));
   end Legendre;

   function Kronecker (A, B : Big_Integer) return Integer
   is
   begin
      return Integer (Mpz_Kronecker (A.Value, B.Value));
   end Kronecker;

   procedure Remove
     (Rop        : in out Big_Integer;
      Op, Factor : in     Big_Integer;
      Count      :    out Natural)
   is
      Ret : unsigned_long;
   begin
      Mpz_Remove (Ret, Rop.Value, Op.Value, Factor.Value);
      Count := Natural (Ret);
   end Remove;

   procedure Factorial
     (Rop : in out Big_Integer;
      Op  : in     Natural)
   is
   begin
      Mpz_Fac_Ui (Rop.Value, unsigned_long (Op));
   end Factorial;

   procedure Binomial
     (Rop : in out Big_Integer;
      N   : in     Big_Integer;
      K   : in     Natural)
   is
   begin
      Mpz_Bin_Ui (Rop.Value, N.Value, unsigned_long (K));
   end Binomial;

   procedure Fibonacci_Number
     (Fn : in out Big_Integer;
      N  : in     Natural)
   is
   begin
      Mpz_Fib_Ui (Fn.Value, unsigned_long (N));
   end Fibonacci_Number;

   procedure Fibonacci_2_Numbers
     (Fn      : in out Big_Integer;
      Fn_Sub1 : in out Big_Integer;
      N       : in     Natural)
   is
   begin
      Mpz_Fib2_Ui (Fn.Value, Fn_Sub1.Value, unsigned_long (N));
   end Fibonacci_2_Numbers;

   procedure Lucas_Number
     (Ln : in out Big_Integer;
      N  : in     Natural)
   is
   begin
      Mpz_Lucnum_Ui (Ln.Value, unsigned_long (N));
   end Lucas_Number;

   procedure Lucas_2_Numbers
     (Ln      : in out Big_Integer;
      Ln_Sub1 : in out Big_Integer;
      N       : in     Natural)
   is
   begin
      Mpz_Lucnum2_Ui (Ln.Value, Ln_Sub1.Value, unsigned_long (N));
   end Lucas_2_Numbers;

   function Sign (Item : in Big_Integer) return A_Sign
   is
   begin
      return A_Sign (Mpz_Sgn (Item.Value));
   end Sign;

   procedure Logical_And (Rop      : in out Big_Integer;
                          Op1, Op2 : in     Big_Integer)
   is
   begin
      Mpz_And (Rop.Value, Op1.Value, Op2.Value);
   end Logical_And;

   procedure Logical_Or (Rop      : in out Big_Integer;
                         Op1, Op2 : in     Big_Integer)
   is
   begin
      Mpz_Ior (Rop.Value, Op1.Value, Op2.Value);
   end Logical_Or;

   procedure Logical_Xor (Rop      : in out Big_Integer;
                          Op1, Op2 : in     Big_Integer)
   is
   begin
      Mpz_Xor (Rop.Value, Op1.Value, Op2.Value);
   end Logical_Xor;

   procedure One_S_Complement
     (Rop : in out Big_Integer;
      Op  : in     Big_Integer)
   is
   begin
      Mpz_Com (Rop.Value, Op.Value);
   end One_S_Complement;

   function Population_Count (Op : Big_Integer) return Bit_Count
   is
   begin
      return Mpz_Popcount (Op.Value);
   end Population_Count;

   function Hamming_Distance (Op1, Op2 : Big_Integer) return Bit_Count
   is
   begin
      return Mpz_Hamdist (Op1.Value, Op2.Value);
   end Hamming_Distance;

   function Scan0 (Op : Big_Integer; Starting_Bit : Bit_Count) return Bit_Count
   is
   begin
      return Mpz_Scan0 (Op.Value, Starting_Bit);
   end Scan0;

   function Scan1 (Op : Big_Integer; Starting_Bit : Bit_Count) return Bit_Count
   is
   begin
      return Mpz_Scan1 (Op.Value, Starting_Bit);
   end Scan1;

   procedure Set_Bit
     (Rop       : in out Big_Integer;
      Bit_Index : in     Bit_Count)
   is
   begin
      Mpz_Setbit (Rop.Value, Bit_Index);
   end Set_Bit;

   procedure Clear_Bit
     (Rop       : in out Big_Integer;
      Bit_Index : in     Bit_Count)
   is
   begin
      Mpz_Clrbit (Rop.Value, Bit_Index);
   end Clear_Bit;

   procedure Complement_Bit
     (Rop       : in out Big_Integer;
      Bit_Index : in     Bit_Count)
   is
   begin
      Mpz_Combit (Rop.Value, Bit_Index);
   end Complement_Bit;

   function Bit_Is_Set (Op : Big_Integer; Bit_Index : Bit_Count) return Boolean
   is
   begin
      return Mpz_Tstbit (Op.Value, Bit_Index) /= 0;
   end Bit_Is_Set;

   function Size_In_Base (Op   : Big_Integer;
                          Base : Positive) return Positive
   is
   begin
      return Positive (Mpz_Sizeinbase (Op.Value, int (Base)));
   end Size_In_Base;

   function Is_Odd (Op : Big_Integer) return Boolean
   is
   begin
      return Mpz_Odd_P (Op.Value) /= 0;
   end Is_Odd;

   function Is_Even (Op : Big_Integer) return Boolean
   is
   begin
      return Mpz_Even_P (Op.Value) /= 0;
   end Is_Even;

end GNU_Multiple_Precision.Big_Integers;