/usr/share/ada/adainclude/gnatvsn/uintp.adb is in libgnatvsn4.8-dev 4.8.2-8ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 | ------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- U I N T P --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Output; use Output;
with Tree_IO; use Tree_IO;
with GNAT.HTable; use GNAT.HTable;
package body Uintp is
------------------------
-- Local Declarations --
------------------------
Uint_Int_First : Uint := Uint_0;
-- Uint value containing Int'First value, set by Initialize. The initial
-- value of Uint_0 is used for an assertion check that ensures that this
-- value is not used before it is initialized. This value is used in the
-- UI_Is_In_Int_Range predicate, and it is right that this is a host value,
-- since the issue is host representation of integer values.
Uint_Int_Last : Uint;
-- Uint value containing Int'Last value set by Initialize
UI_Power_2 : array (Int range 0 .. 64) of Uint;
-- This table is used to memoize exponentiations by powers of 2. The Nth
-- entry, if set, contains the Uint value 2 ** N. Initially UI_Power_2_Set
-- is zero and only the 0'th entry is set, the invariant being that all
-- entries in the range 0 .. UI_Power_2_Set are initialized.
UI_Power_2_Set : Nat;
-- Number of entries set in UI_Power_2;
UI_Power_10 : array (Int range 0 .. 64) of Uint;
-- This table is used to memoize exponentiations by powers of 10 in the
-- same manner as described above for UI_Power_2.
UI_Power_10_Set : Nat;
-- Number of entries set in UI_Power_10;
Uints_Min : Uint;
Udigits_Min : Int;
-- These values are used to make sure that the mark/release mechanism does
-- not destroy values saved in the U_Power tables or in the hash table used
-- by UI_From_Int. Whenever an entry is made in either of these tables,
-- Uints_Min and Udigits_Min are updated to protect the entry, and Release
-- never cuts back beyond these minimum values.
Int_0 : constant Int := 0;
Int_1 : constant Int := 1;
Int_2 : constant Int := 2;
-- These values are used in some cases where the use of numeric literals
-- would cause ambiguities (integer vs Uint).
----------------------------
-- UI_From_Int Hash Table --
----------------------------
-- UI_From_Int uses a hash table to avoid duplicating entries and wasting
-- storage. This is particularly important for complex cases of back
-- annotation.
subtype Hnum is Nat range 0 .. 1022;
function Hash_Num (F : Int) return Hnum;
-- Hashing function
package UI_Ints is new Simple_HTable (
Header_Num => Hnum,
Element => Uint,
No_Element => No_Uint,
Key => Int,
Hash => Hash_Num,
Equal => "=");
-----------------------
-- Local Subprograms --
-----------------------
function Direct (U : Uint) return Boolean;
pragma Inline (Direct);
-- Returns True if U is represented directly
function Direct_Val (U : Uint) return Int;
-- U is a Uint for is represented directly. The returned result is the
-- value represented.
function GCD (Jin, Kin : Int) return Int;
-- Compute GCD of two integers. Assumes that Jin >= Kin >= 0
procedure Image_Out
(Input : Uint;
To_Buffer : Boolean;
Format : UI_Format);
-- Common processing for UI_Image and UI_Write, To_Buffer is set True for
-- UI_Image, and false for UI_Write, and Format is copied from the Format
-- parameter to UI_Image or UI_Write.
procedure Init_Operand (UI : Uint; Vec : out UI_Vector);
pragma Inline (Init_Operand);
-- This procedure puts the value of UI into the vector in canonical
-- multiple precision format. The parameter should be of the correct size
-- as determined by a previous call to N_Digits (UI). The first digit of
-- Vec contains the sign, all other digits are always non-negative. Note
-- that the input may be directly represented, and in this case Vec will
-- contain the corresponding one or two digit value. The low bound of Vec
-- is always 1.
function Least_Sig_Digit (Arg : Uint) return Int;
pragma Inline (Least_Sig_Digit);
-- Returns the Least Significant Digit of Arg quickly. When the given Uint
-- is less than 2**15, the value returned is the input value, in this case
-- the result may be negative. It is expected that any use will mask off
-- unnecessary bits. This is used for finding Arg mod B where B is a power
-- of two. Hence the actual base is irrelevant as long as it is a power of
-- two.
procedure Most_Sig_2_Digits
(Left : Uint;
Right : Uint;
Left_Hat : out Int;
Right_Hat : out Int);
-- Returns leading two significant digits from the given pair of Uint's.
-- Mathematically: returns Left / (Base ** K) and Right / (Base ** K) where
-- K is as small as possible S.T. Right_Hat < Base * Base. It is required
-- that Left > Right for the algorithm to work.
function N_Digits (Input : Uint) return Int;
pragma Inline (N_Digits);
-- Returns number of "digits" in a Uint
procedure UI_Div_Rem
(Left, Right : Uint;
Quotient : out Uint;
Remainder : out Uint;
Discard_Quotient : Boolean := False;
Discard_Remainder : Boolean := False);
-- Compute Euclidean division of Left by Right. If Discard_Quotient is
-- False then the quotient is returned in Quotient (otherwise Quotient is
-- set to No_Uint). If Discard_Remainder is False, then the remainder is
-- returned in Remainder (otherwise Remainder is set to No_Uint).
--
-- If Discard_Quotient is True, Quotient is set to No_Uint
-- If Discard_Remainder is True, Remainder is set to No_Uint
function Vector_To_Uint
(In_Vec : UI_Vector;
Negative : Boolean) return Uint;
-- Functions that calculate values in UI_Vectors, call this function to
-- create and return the Uint value. In_Vec contains the multiple precision
-- (Base) representation of a non-negative value. Leading zeroes are
-- permitted. Negative is set if the desired result is the negative of the
-- given value. The result will be either the appropriate directly
-- represented value, or a table entry in the proper canonical format is
-- created and returned.
--
-- Note that Init_Operand puts a signed value in the result vector, but
-- Vector_To_Uint is always presented with a non-negative value. The
-- processing of signs is something that is done by the caller before
-- calling Vector_To_Uint.
------------
-- Direct --
------------
function Direct (U : Uint) return Boolean is
begin
return Int (U) <= Int (Uint_Direct_Last);
end Direct;
----------------
-- Direct_Val --
----------------
function Direct_Val (U : Uint) return Int is
begin
pragma Assert (Direct (U));
return Int (U) - Int (Uint_Direct_Bias);
end Direct_Val;
---------
-- GCD --
---------
function GCD (Jin, Kin : Int) return Int is
J, K, Tmp : Int;
begin
pragma Assert (Jin >= Kin);
pragma Assert (Kin >= Int_0);
J := Jin;
K := Kin;
while K /= Uint_0 loop
Tmp := J mod K;
J := K;
K := Tmp;
end loop;
return J;
end GCD;
--------------
-- Hash_Num --
--------------
function Hash_Num (F : Int) return Hnum is
begin
return Types."mod" (F, Hnum'Range_Length);
end Hash_Num;
---------------
-- Image_Out --
---------------
procedure Image_Out
(Input : Uint;
To_Buffer : Boolean;
Format : UI_Format)
is
Marks : constant Uintp.Save_Mark := Uintp.Mark;
Base : Uint;
Ainput : Uint;
Digs_Output : Natural := 0;
-- Counts digits output. In hex mode, but not in decimal mode, we
-- put an underline after every four hex digits that are output.
Exponent : Natural := 0;
-- If the number is too long to fit in the buffer, we switch to an
-- approximate output format with an exponent. This variable records
-- the exponent value.
function Better_In_Hex return Boolean;
-- Determines if it is better to generate digits in base 16 (result
-- is true) or base 10 (result is false). The choice is purely a
-- matter of convenience and aesthetics, so it does not matter which
-- value is returned from a correctness point of view.
procedure Image_Char (C : Character);
-- Internal procedure to output one character
procedure Image_Exponent (N : Natural);
-- Output non-zero exponent. Note that we only use the exponent form in
-- the buffer case, so we know that To_Buffer is true.
procedure Image_Uint (U : Uint);
-- Internal procedure to output characters of non-negative Uint
-------------------
-- Better_In_Hex --
-------------------
function Better_In_Hex return Boolean is
T16 : constant Uint := Uint_2 ** Int'(16);
A : Uint;
begin
A := UI_Abs (Input);
-- Small values up to 2**16 can always be in decimal
if A < T16 then
return False;
end if;
-- Otherwise, see if we are a power of 2 or one less than a power
-- of 2. For the moment these are the only cases printed in hex.
if A mod Uint_2 = Uint_1 then
A := A + Uint_1;
end if;
loop
if A mod T16 /= Uint_0 then
return False;
else
A := A / T16;
end if;
exit when A < T16;
end loop;
while A > Uint_2 loop
if A mod Uint_2 /= Uint_0 then
return False;
else
A := A / Uint_2;
end if;
end loop;
return True;
end Better_In_Hex;
----------------
-- Image_Char --
----------------
procedure Image_Char (C : Character) is
begin
if To_Buffer then
if UI_Image_Length + 6 > UI_Image_Max then
Exponent := Exponent + 1;
else
UI_Image_Length := UI_Image_Length + 1;
UI_Image_Buffer (UI_Image_Length) := C;
end if;
else
Write_Char (C);
end if;
end Image_Char;
--------------------
-- Image_Exponent --
--------------------
procedure Image_Exponent (N : Natural) is
begin
if N >= 10 then
Image_Exponent (N / 10);
end if;
UI_Image_Length := UI_Image_Length + 1;
UI_Image_Buffer (UI_Image_Length) :=
Character'Val (Character'Pos ('0') + N mod 10);
end Image_Exponent;
----------------
-- Image_Uint --
----------------
procedure Image_Uint (U : Uint) is
H : constant array (Int range 0 .. 15) of Character :=
"0123456789ABCDEF";
Q, R : Uint;
begin
UI_Div_Rem (U, Base, Q, R);
if Q > Uint_0 then
Image_Uint (Q);
end if;
if Digs_Output = 4 and then Base = Uint_16 then
Image_Char ('_');
Digs_Output := 0;
end if;
Image_Char (H (UI_To_Int (R)));
Digs_Output := Digs_Output + 1;
end Image_Uint;
-- Start of processing for Image_Out
begin
if Input = No_Uint then
Image_Char ('?');
return;
end if;
UI_Image_Length := 0;
if Input < Uint_0 then
Image_Char ('-');
Ainput := -Input;
else
Ainput := Input;
end if;
if Format = Hex
or else (Format = Auto and then Better_In_Hex)
then
Base := Uint_16;
Image_Char ('1');
Image_Char ('6');
Image_Char ('#');
Image_Uint (Ainput);
Image_Char ('#');
else
Base := Uint_10;
Image_Uint (Ainput);
end if;
if Exponent /= 0 then
UI_Image_Length := UI_Image_Length + 1;
UI_Image_Buffer (UI_Image_Length) := 'E';
Image_Exponent (Exponent);
end if;
Uintp.Release (Marks);
end Image_Out;
-------------------
-- Init_Operand --
-------------------
procedure Init_Operand (UI : Uint; Vec : out UI_Vector) is
Loc : Int;
pragma Assert (Vec'First = Int'(1));
begin
if Direct (UI) then
Vec (1) := Direct_Val (UI);
if Vec (1) >= Base then
Vec (2) := Vec (1) rem Base;
Vec (1) := Vec (1) / Base;
end if;
else
Loc := Uints.Table (UI).Loc;
for J in 1 .. Uints.Table (UI).Length loop
Vec (J) := Udigits.Table (Loc + J - 1);
end loop;
end if;
end Init_Operand;
----------------
-- Initialize --
----------------
procedure Initialize is
begin
Uints.Init;
Udigits.Init;
Uint_Int_First := UI_From_Int (Int'First);
Uint_Int_Last := UI_From_Int (Int'Last);
UI_Power_2 (0) := Uint_1;
UI_Power_2_Set := 0;
UI_Power_10 (0) := Uint_1;
UI_Power_10_Set := 0;
Uints_Min := Uints.Last;
Udigits_Min := Udigits.Last;
UI_Ints.Reset;
end Initialize;
---------------------
-- Least_Sig_Digit --
---------------------
function Least_Sig_Digit (Arg : Uint) return Int is
V : Int;
begin
if Direct (Arg) then
V := Direct_Val (Arg);
if V >= Base then
V := V mod Base;
end if;
-- Note that this result may be negative
return V;
else
return
Udigits.Table
(Uints.Table (Arg).Loc + Uints.Table (Arg).Length - 1);
end if;
end Least_Sig_Digit;
----------
-- Mark --
----------
function Mark return Save_Mark is
begin
return (Save_Uint => Uints.Last, Save_Udigit => Udigits.Last);
end Mark;
-----------------------
-- Most_Sig_2_Digits --
-----------------------
procedure Most_Sig_2_Digits
(Left : Uint;
Right : Uint;
Left_Hat : out Int;
Right_Hat : out Int)
is
begin
pragma Assert (Left >= Right);
if Direct (Left) then
Left_Hat := Direct_Val (Left);
Right_Hat := Direct_Val (Right);
return;
else
declare
L1 : constant Int :=
Udigits.Table (Uints.Table (Left).Loc);
L2 : constant Int :=
Udigits.Table (Uints.Table (Left).Loc + 1);
begin
-- It is not so clear what to return when Arg is negative???
Left_Hat := abs (L1) * Base + L2;
end;
end if;
declare
Length_L : constant Int := Uints.Table (Left).Length;
Length_R : Int;
R1 : Int;
R2 : Int;
T : Int;
begin
if Direct (Right) then
T := Direct_Val (Left);
R1 := abs (T / Base);
R2 := T rem Base;
Length_R := 2;
else
R1 := abs (Udigits.Table (Uints.Table (Right).Loc));
R2 := Udigits.Table (Uints.Table (Right).Loc + 1);
Length_R := Uints.Table (Right).Length;
end if;
if Length_L = Length_R then
Right_Hat := R1 * Base + R2;
elsif Length_L = Length_R + Int_1 then
Right_Hat := R1;
else
Right_Hat := 0;
end if;
end;
end Most_Sig_2_Digits;
---------------
-- N_Digits --
---------------
-- Note: N_Digits returns 1 for No_Uint
function N_Digits (Input : Uint) return Int is
begin
if Direct (Input) then
if Direct_Val (Input) >= Base then
return 2;
else
return 1;
end if;
else
return Uints.Table (Input).Length;
end if;
end N_Digits;
--------------
-- Num_Bits --
--------------
function Num_Bits (Input : Uint) return Nat is
Bits : Nat;
Num : Nat;
begin
-- Largest negative number has to be handled specially, since it is in
-- Int_Range, but we cannot take the absolute value.
if Input = Uint_Int_First then
return Int'Size;
-- For any other number in Int_Range, get absolute value of number
elsif UI_Is_In_Int_Range (Input) then
Num := abs (UI_To_Int (Input));
Bits := 0;
-- If not in Int_Range then initialize bit count for all low order
-- words, and set number to high order digit.
else
Bits := Base_Bits * (Uints.Table (Input).Length - 1);
Num := abs (Udigits.Table (Uints.Table (Input).Loc));
end if;
-- Increase bit count for remaining value in Num
while Types.">" (Num, 0) loop
Num := Num / 2;
Bits := Bits + 1;
end loop;
return Bits;
end Num_Bits;
---------
-- pid --
---------
procedure pid (Input : Uint) is
begin
UI_Write (Input, Decimal);
Write_Eol;
end pid;
---------
-- pih --
---------
procedure pih (Input : Uint) is
begin
UI_Write (Input, Hex);
Write_Eol;
end pih;
-------------
-- Release --
-------------
procedure Release (M : Save_Mark) is
begin
Uints.Set_Last (Uint'Max (M.Save_Uint, Uints_Min));
Udigits.Set_Last (Int'Max (M.Save_Udigit, Udigits_Min));
end Release;
----------------------
-- Release_And_Save --
----------------------
procedure Release_And_Save (M : Save_Mark; UI : in out Uint) is
begin
if Direct (UI) then
Release (M);
else
declare
UE_Len : constant Pos := Uints.Table (UI).Length;
UE_Loc : constant Int := Uints.Table (UI).Loc;
UD : constant Udigits.Table_Type (1 .. UE_Len) :=
Udigits.Table (UE_Loc .. UE_Loc + UE_Len - 1);
begin
Release (M);
Uints.Append ((Length => UE_Len, Loc => Udigits.Last + 1));
UI := Uints.Last;
for J in 1 .. UE_Len loop
Udigits.Append (UD (J));
end loop;
end;
end if;
end Release_And_Save;
procedure Release_And_Save (M : Save_Mark; UI1, UI2 : in out Uint) is
begin
if Direct (UI1) then
Release_And_Save (M, UI2);
elsif Direct (UI2) then
Release_And_Save (M, UI1);
else
declare
UE1_Len : constant Pos := Uints.Table (UI1).Length;
UE1_Loc : constant Int := Uints.Table (UI1).Loc;
UD1 : constant Udigits.Table_Type (1 .. UE1_Len) :=
Udigits.Table (UE1_Loc .. UE1_Loc + UE1_Len - 1);
UE2_Len : constant Pos := Uints.Table (UI2).Length;
UE2_Loc : constant Int := Uints.Table (UI2).Loc;
UD2 : constant Udigits.Table_Type (1 .. UE2_Len) :=
Udigits.Table (UE2_Loc .. UE2_Loc + UE2_Len - 1);
begin
Release (M);
Uints.Append ((Length => UE1_Len, Loc => Udigits.Last + 1));
UI1 := Uints.Last;
for J in 1 .. UE1_Len loop
Udigits.Append (UD1 (J));
end loop;
Uints.Append ((Length => UE2_Len, Loc => Udigits.Last + 1));
UI2 := Uints.Last;
for J in 1 .. UE2_Len loop
Udigits.Append (UD2 (J));
end loop;
end;
end if;
end Release_And_Save;
---------------
-- Tree_Read --
---------------
procedure Tree_Read is
begin
Uints.Tree_Read;
Udigits.Tree_Read;
Tree_Read_Int (Int (Uint_Int_First));
Tree_Read_Int (Int (Uint_Int_Last));
Tree_Read_Int (UI_Power_2_Set);
Tree_Read_Int (UI_Power_10_Set);
Tree_Read_Int (Int (Uints_Min));
Tree_Read_Int (Udigits_Min);
for J in 0 .. UI_Power_2_Set loop
Tree_Read_Int (Int (UI_Power_2 (J)));
end loop;
for J in 0 .. UI_Power_10_Set loop
Tree_Read_Int (Int (UI_Power_10 (J)));
end loop;
end Tree_Read;
----------------
-- Tree_Write --
----------------
procedure Tree_Write is
begin
Uints.Tree_Write;
Udigits.Tree_Write;
Tree_Write_Int (Int (Uint_Int_First));
Tree_Write_Int (Int (Uint_Int_Last));
Tree_Write_Int (UI_Power_2_Set);
Tree_Write_Int (UI_Power_10_Set);
Tree_Write_Int (Int (Uints_Min));
Tree_Write_Int (Udigits_Min);
for J in 0 .. UI_Power_2_Set loop
Tree_Write_Int (Int (UI_Power_2 (J)));
end loop;
for J in 0 .. UI_Power_10_Set loop
Tree_Write_Int (Int (UI_Power_10 (J)));
end loop;
end Tree_Write;
-------------
-- UI_Abs --
-------------
function UI_Abs (Right : Uint) return Uint is
begin
if Right < Uint_0 then
return -Right;
else
return Right;
end if;
end UI_Abs;
-------------
-- UI_Add --
-------------
function UI_Add (Left : Int; Right : Uint) return Uint is
begin
return UI_Add (UI_From_Int (Left), Right);
end UI_Add;
function UI_Add (Left : Uint; Right : Int) return Uint is
begin
return UI_Add (Left, UI_From_Int (Right));
end UI_Add;
function UI_Add (Left : Uint; Right : Uint) return Uint is
begin
-- Simple cases of direct operands and addition of zero
if Direct (Left) then
if Direct (Right) then
return UI_From_Int (Direct_Val (Left) + Direct_Val (Right));
elsif Int (Left) = Int (Uint_0) then
return Right;
end if;
elsif Direct (Right) and then Int (Right) = Int (Uint_0) then
return Left;
end if;
-- Otherwise full circuit is needed
declare
L_Length : constant Int := N_Digits (Left);
R_Length : constant Int := N_Digits (Right);
L_Vec : UI_Vector (1 .. L_Length);
R_Vec : UI_Vector (1 .. R_Length);
Sum_Length : Int;
Tmp_Int : Int;
Carry : Int;
Borrow : Int;
X_Bigger : Boolean := False;
Y_Bigger : Boolean := False;
Result_Neg : Boolean := False;
begin
Init_Operand (Left, L_Vec);
Init_Operand (Right, R_Vec);
-- At least one of the two operands is in multi-digit form.
-- Calculate the number of digits sufficient to hold result.
if L_Length > R_Length then
Sum_Length := L_Length + 1;
X_Bigger := True;
else
Sum_Length := R_Length + 1;
if R_Length > L_Length then
Y_Bigger := True;
end if;
end if;
-- Make copies of the absolute values of L_Vec and R_Vec into X and Y
-- both with lengths equal to the maximum possibly needed. This makes
-- looping over the digits much simpler.
declare
X : UI_Vector (1 .. Sum_Length);
Y : UI_Vector (1 .. Sum_Length);
Tmp_UI : UI_Vector (1 .. Sum_Length);
begin
for J in 1 .. Sum_Length - L_Length loop
X (J) := 0;
end loop;
X (Sum_Length - L_Length + 1) := abs L_Vec (1);
for J in 2 .. L_Length loop
X (J + (Sum_Length - L_Length)) := L_Vec (J);
end loop;
for J in 1 .. Sum_Length - R_Length loop
Y (J) := 0;
end loop;
Y (Sum_Length - R_Length + 1) := abs R_Vec (1);
for J in 2 .. R_Length loop
Y (J + (Sum_Length - R_Length)) := R_Vec (J);
end loop;
if (L_Vec (1) < Int_0) = (R_Vec (1) < Int_0) then
-- Same sign so just add
Carry := 0;
for J in reverse 1 .. Sum_Length loop
Tmp_Int := X (J) + Y (J) + Carry;
if Tmp_Int >= Base then
Tmp_Int := Tmp_Int - Base;
Carry := 1;
else
Carry := 0;
end if;
X (J) := Tmp_Int;
end loop;
return Vector_To_Uint (X, L_Vec (1) < Int_0);
else
-- Find which one has bigger magnitude
if not (X_Bigger or Y_Bigger) then
for J in L_Vec'Range loop
if abs L_Vec (J) > abs R_Vec (J) then
X_Bigger := True;
exit;
elsif abs R_Vec (J) > abs L_Vec (J) then
Y_Bigger := True;
exit;
end if;
end loop;
end if;
-- If they have identical magnitude, just return 0, else swap
-- if necessary so that X had the bigger magnitude. Determine
-- if result is negative at this time.
Result_Neg := False;
if not (X_Bigger or Y_Bigger) then
return Uint_0;
elsif Y_Bigger then
if R_Vec (1) < Int_0 then
Result_Neg := True;
end if;
Tmp_UI := X;
X := Y;
Y := Tmp_UI;
else
if L_Vec (1) < Int_0 then
Result_Neg := True;
end if;
end if;
-- Subtract Y from the bigger X
Borrow := 0;
for J in reverse 1 .. Sum_Length loop
Tmp_Int := X (J) - Y (J) + Borrow;
if Tmp_Int < Int_0 then
Tmp_Int := Tmp_Int + Base;
Borrow := -1;
else
Borrow := 0;
end if;
X (J) := Tmp_Int;
end loop;
return Vector_To_Uint (X, Result_Neg);
end if;
end;
end;
end UI_Add;
--------------------------
-- UI_Decimal_Digits_Hi --
--------------------------
function UI_Decimal_Digits_Hi (U : Uint) return Nat is
begin
-- The maximum value of a "digit" is 32767, which is 5 decimal digits,
-- so an N_Digit number could take up to 5 times this number of digits.
-- This is certainly too high for large numbers but it is not worth
-- worrying about.
return 5 * N_Digits (U);
end UI_Decimal_Digits_Hi;
--------------------------
-- UI_Decimal_Digits_Lo --
--------------------------
function UI_Decimal_Digits_Lo (U : Uint) return Nat is
begin
-- The maximum value of a "digit" is 32767, which is more than four
-- decimal digits, but not a full five digits. The easily computed
-- minimum number of decimal digits is thus 1 + 4 * the number of
-- digits. This is certainly too low for large numbers but it is not
-- worth worrying about.
return 1 + 4 * (N_Digits (U) - 1);
end UI_Decimal_Digits_Lo;
------------
-- UI_Div --
------------
function UI_Div (Left : Int; Right : Uint) return Uint is
begin
return UI_Div (UI_From_Int (Left), Right);
end UI_Div;
function UI_Div (Left : Uint; Right : Int) return Uint is
begin
return UI_Div (Left, UI_From_Int (Right));
end UI_Div;
function UI_Div (Left, Right : Uint) return Uint is
Quotient : Uint;
Remainder : Uint;
pragma Warnings (Off, Remainder);
begin
UI_Div_Rem
(Left, Right,
Quotient, Remainder,
Discard_Remainder => True);
return Quotient;
end UI_Div;
----------------
-- UI_Div_Rem --
----------------
procedure UI_Div_Rem
(Left, Right : Uint;
Quotient : out Uint;
Remainder : out Uint;
Discard_Quotient : Boolean := False;
Discard_Remainder : Boolean := False)
is
begin
pragma Assert (Right /= Uint_0);
Quotient := No_Uint;
Remainder := No_Uint;
-- Cases where both operands are represented directly
if Direct (Left) and then Direct (Right) then
declare
DV_Left : constant Int := Direct_Val (Left);
DV_Right : constant Int := Direct_Val (Right);
begin
if not Discard_Quotient then
Quotient := UI_From_Int (DV_Left / DV_Right);
end if;
if not Discard_Remainder then
Remainder := UI_From_Int (DV_Left rem DV_Right);
end if;
return;
end;
end if;
declare
L_Length : constant Int := N_Digits (Left);
R_Length : constant Int := N_Digits (Right);
Q_Length : constant Int := L_Length - R_Length + 1;
L_Vec : UI_Vector (1 .. L_Length);
R_Vec : UI_Vector (1 .. R_Length);
D : Int;
Remainder_I : Int;
Tmp_Divisor : Int;
Carry : Int;
Tmp_Int : Int;
Tmp_Dig : Int;
procedure UI_Div_Vector
(L_Vec : UI_Vector;
R_Int : Int;
Quotient : out UI_Vector;
Remainder : out Int);
pragma Inline (UI_Div_Vector);
-- Specialised variant for case where the divisor is a single digit
procedure UI_Div_Vector
(L_Vec : UI_Vector;
R_Int : Int;
Quotient : out UI_Vector;
Remainder : out Int)
is
Tmp_Int : Int;
begin
Remainder := 0;
for J in L_Vec'Range loop
Tmp_Int := Remainder * Base + abs L_Vec (J);
Quotient (Quotient'First + J - L_Vec'First) := Tmp_Int / R_Int;
Remainder := Tmp_Int rem R_Int;
end loop;
if L_Vec (L_Vec'First) < Int_0 then
Remainder := -Remainder;
end if;
end UI_Div_Vector;
-- Start of processing for UI_Div_Rem
begin
-- Result is zero if left operand is shorter than right
if L_Length < R_Length then
if not Discard_Quotient then
Quotient := Uint_0;
end if;
if not Discard_Remainder then
Remainder := Left;
end if;
return;
end if;
Init_Operand (Left, L_Vec);
Init_Operand (Right, R_Vec);
-- Case of right operand is single digit. Here we can simply divide
-- each digit of the left operand by the divisor, from most to least
-- significant, carrying the remainder to the next digit (just like
-- ordinary long division by hand).
if R_Length = Int_1 then
Tmp_Divisor := abs R_Vec (1);
declare
Quotient_V : UI_Vector (1 .. L_Length);
begin
UI_Div_Vector (L_Vec, Tmp_Divisor, Quotient_V, Remainder_I);
if not Discard_Quotient then
Quotient :=
Vector_To_Uint
(Quotient_V, (L_Vec (1) < Int_0 xor R_Vec (1) < Int_0));
end if;
if not Discard_Remainder then
Remainder := UI_From_Int (Remainder_I);
end if;
return;
end;
end if;
-- The possible simple cases have been exhausted. Now turn to the
-- algorithm D from the section of Knuth mentioned at the top of
-- this package.
Algorithm_D : declare
Dividend : UI_Vector (1 .. L_Length + 1);
Divisor : UI_Vector (1 .. R_Length);
Quotient_V : UI_Vector (1 .. Q_Length);
Divisor_Dig1 : Int;
Divisor_Dig2 : Int;
Q_Guess : Int;
R_Guess : Int;
begin
-- [ NORMALIZE ] (step D1 in the algorithm). First calculate the
-- scale d, and then multiply Left and Right (u and v in the book)
-- by d to get the dividend and divisor to work with.
D := Base / (abs R_Vec (1) + 1);
Dividend (1) := 0;
Dividend (2) := abs L_Vec (1);
for J in 3 .. L_Length + Int_1 loop
Dividend (J) := L_Vec (J - 1);
end loop;
Divisor (1) := abs R_Vec (1);
for J in Int_2 .. R_Length loop
Divisor (J) := R_Vec (J);
end loop;
if D > Int_1 then
-- Multiply Dividend by d
Carry := 0;
for J in reverse Dividend'Range loop
Tmp_Int := Dividend (J) * D + Carry;
Dividend (J) := Tmp_Int rem Base;
Carry := Tmp_Int / Base;
end loop;
-- Multiply Divisor by d
Carry := 0;
for J in reverse Divisor'Range loop
Tmp_Int := Divisor (J) * D + Carry;
Divisor (J) := Tmp_Int rem Base;
Carry := Tmp_Int / Base;
end loop;
end if;
-- Main loop of long division algorithm
Divisor_Dig1 := Divisor (1);
Divisor_Dig2 := Divisor (2);
for J in Quotient_V'Range loop
-- [ CALCULATE Q (hat) ] (step D3 in the algorithm)
-- Note: this version of step D3 is from the original published
-- algorithm, which is known to have a bug causing overflows.
-- See: http://www-cs-faculty.stanford.edu/~uno/err2-2e.ps.gz
-- and http://www-cs-faculty.stanford.edu/~uno/all2-pre.ps.gz.
-- The code below is the fixed version of this step.
Tmp_Int := Dividend (J) * Base + Dividend (J + 1);
-- Initial guess
Q_Guess := Tmp_Int / Divisor_Dig1;
R_Guess := Tmp_Int rem Divisor_Dig1;
-- Refine the guess
while Q_Guess >= Base
or else Divisor_Dig2 * Q_Guess >
R_Guess * Base + Dividend (J + 2)
loop
Q_Guess := Q_Guess - 1;
R_Guess := R_Guess + Divisor_Dig1;
exit when R_Guess >= Base;
end loop;
-- [ MULTIPLY & SUBTRACT ] (step D4). Q_Guess * Divisor is
-- subtracted from the remaining dividend.
Carry := 0;
for K in reverse Divisor'Range loop
Tmp_Int := Dividend (J + K) - Q_Guess * Divisor (K) + Carry;
Tmp_Dig := Tmp_Int rem Base;
Carry := Tmp_Int / Base;
if Tmp_Dig < Int_0 then
Tmp_Dig := Tmp_Dig + Base;
Carry := Carry - 1;
end if;
Dividend (J + K) := Tmp_Dig;
end loop;
Dividend (J) := Dividend (J) + Carry;
-- [ TEST REMAINDER ] & [ ADD BACK ] (steps D5 and D6)
-- Here there is a slight difference from the book: the last
-- carry is always added in above and below (cancelling each
-- other). In fact the dividend going negative is used as
-- the test.
-- If the Dividend went negative, then Q_Guess was off by
-- one, so it is decremented, and the divisor is added back
-- into the relevant portion of the dividend.
if Dividend (J) < Int_0 then
Q_Guess := Q_Guess - 1;
Carry := 0;
for K in reverse Divisor'Range loop
Tmp_Int := Dividend (J + K) + Divisor (K) + Carry;
if Tmp_Int >= Base then
Tmp_Int := Tmp_Int - Base;
Carry := 1;
else
Carry := 0;
end if;
Dividend (J + K) := Tmp_Int;
end loop;
Dividend (J) := Dividend (J) + Carry;
end if;
-- Finally we can get the next quotient digit
Quotient_V (J) := Q_Guess;
end loop;
-- [ UNNORMALIZE ] (step D8)
if not Discard_Quotient then
Quotient := Vector_To_Uint
(Quotient_V, (L_Vec (1) < Int_0 xor R_Vec (1) < Int_0));
end if;
if not Discard_Remainder then
declare
Remainder_V : UI_Vector (1 .. R_Length);
Discard_Int : Int;
pragma Warnings (Off, Discard_Int);
begin
UI_Div_Vector
(Dividend (Dividend'Last - R_Length + 1 .. Dividend'Last),
D,
Remainder_V, Discard_Int);
Remainder := Vector_To_Uint (Remainder_V, L_Vec (1) < Int_0);
end;
end if;
end Algorithm_D;
end;
end UI_Div_Rem;
------------
-- UI_Eq --
------------
function UI_Eq (Left : Int; Right : Uint) return Boolean is
begin
return not UI_Ne (UI_From_Int (Left), Right);
end UI_Eq;
function UI_Eq (Left : Uint; Right : Int) return Boolean is
begin
return not UI_Ne (Left, UI_From_Int (Right));
end UI_Eq;
function UI_Eq (Left : Uint; Right : Uint) return Boolean is
begin
return not UI_Ne (Left, Right);
end UI_Eq;
--------------
-- UI_Expon --
--------------
function UI_Expon (Left : Int; Right : Uint) return Uint is
begin
return UI_Expon (UI_From_Int (Left), Right);
end UI_Expon;
function UI_Expon (Left : Uint; Right : Int) return Uint is
begin
return UI_Expon (Left, UI_From_Int (Right));
end UI_Expon;
function UI_Expon (Left : Int; Right : Int) return Uint is
begin
return UI_Expon (UI_From_Int (Left), UI_From_Int (Right));
end UI_Expon;
function UI_Expon (Left : Uint; Right : Uint) return Uint is
begin
pragma Assert (Right >= Uint_0);
-- Any value raised to power of 0 is 1
if Right = Uint_0 then
return Uint_1;
-- 0 to any positive power is 0
elsif Left = Uint_0 then
return Uint_0;
-- 1 to any power is 1
elsif Left = Uint_1 then
return Uint_1;
-- Any value raised to power of 1 is that value
elsif Right = Uint_1 then
return Left;
-- Cases which can be done by table lookup
elsif Right <= Uint_64 then
-- 2 ** N for N in 2 .. 64
if Left = Uint_2 then
declare
Right_Int : constant Int := Direct_Val (Right);
begin
if Right_Int > UI_Power_2_Set then
for J in UI_Power_2_Set + Int_1 .. Right_Int loop
UI_Power_2 (J) := UI_Power_2 (J - Int_1) * Int_2;
Uints_Min := Uints.Last;
Udigits_Min := Udigits.Last;
end loop;
UI_Power_2_Set := Right_Int;
end if;
return UI_Power_2 (Right_Int);
end;
-- 10 ** N for N in 2 .. 64
elsif Left = Uint_10 then
declare
Right_Int : constant Int := Direct_Val (Right);
begin
if Right_Int > UI_Power_10_Set then
for J in UI_Power_10_Set + Int_1 .. Right_Int loop
UI_Power_10 (J) := UI_Power_10 (J - Int_1) * Int (10);
Uints_Min := Uints.Last;
Udigits_Min := Udigits.Last;
end loop;
UI_Power_10_Set := Right_Int;
end if;
return UI_Power_10 (Right_Int);
end;
end if;
end if;
-- If we fall through, then we have the general case (see Knuth 4.6.3)
declare
N : Uint := Right;
Squares : Uint := Left;
Result : Uint := Uint_1;
M : constant Uintp.Save_Mark := Uintp.Mark;
begin
loop
if (Least_Sig_Digit (N) mod Int_2) = Int_1 then
Result := Result * Squares;
end if;
N := N / Uint_2;
exit when N = Uint_0;
Squares := Squares * Squares;
end loop;
Uintp.Release_And_Save (M, Result);
return Result;
end;
end UI_Expon;
----------------
-- UI_From_CC --
----------------
function UI_From_CC (Input : Char_Code) return Uint is
begin
return UI_From_Int (Int (Input));
end UI_From_CC;
-----------------
-- UI_From_Int --
-----------------
function UI_From_Int (Input : Int) return Uint is
U : Uint;
begin
if Min_Direct <= Input and then Input <= Max_Direct then
return Uint (Int (Uint_Direct_Bias) + Input);
end if;
-- If already in the hash table, return entry
U := UI_Ints.Get (Input);
if U /= No_Uint then
return U;
end if;
-- For values of larger magnitude, compute digits into a vector and call
-- Vector_To_Uint.
declare
Max_For_Int : constant := 3;
-- Base is defined so that 3 Uint digits is sufficient to hold the
-- largest possible Int value.
V : UI_Vector (1 .. Max_For_Int);
Temp_Integer : Int := Input;
begin
for J in reverse V'Range loop
V (J) := abs (Temp_Integer rem Base);
Temp_Integer := Temp_Integer / Base;
end loop;
U := Vector_To_Uint (V, Input < Int_0);
UI_Ints.Set (Input, U);
Uints_Min := Uints.Last;
Udigits_Min := Udigits.Last;
return U;
end;
end UI_From_Int;
------------
-- UI_GCD --
------------
-- Lehmer's algorithm for GCD
-- The idea is to avoid using multiple precision arithmetic wherever
-- possible, substituting Int arithmetic instead. See Knuth volume II,
-- Algorithm L (page 329).
-- We use the same notation as Knuth (U_Hat standing for the obvious!)
function UI_GCD (Uin, Vin : Uint) return Uint is
U, V : Uint;
-- Copies of Uin and Vin
U_Hat, V_Hat : Int;
-- The most Significant digits of U,V
A, B, C, D, T, Q, Den1, Den2 : Int;
Tmp_UI : Uint;
Marks : constant Uintp.Save_Mark := Uintp.Mark;
Iterations : Integer := 0;
begin
pragma Assert (Uin >= Vin);
pragma Assert (Vin >= Uint_0);
U := Uin;
V := Vin;
loop
Iterations := Iterations + 1;
if Direct (V) then
if V = Uint_0 then
return U;
else
return
UI_From_Int (GCD (Direct_Val (V), UI_To_Int (U rem V)));
end if;
end if;
Most_Sig_2_Digits (U, V, U_Hat, V_Hat);
A := 1;
B := 0;
C := 0;
D := 1;
loop
-- We might overflow and get division by zero here. This just
-- means we cannot take the single precision step
Den1 := V_Hat + C;
Den2 := V_Hat + D;
exit when Den1 = Int_0 or else Den2 = Int_0;
-- Compute Q, the trial quotient
Q := (U_Hat + A) / Den1;
exit when Q /= ((U_Hat + B) / Den2);
-- A single precision step Euclid step will give same answer as a
-- multiprecision one.
T := A - (Q * C);
A := C;
C := T;
T := B - (Q * D);
B := D;
D := T;
T := U_Hat - (Q * V_Hat);
U_Hat := V_Hat;
V_Hat := T;
end loop;
-- Take a multiprecision Euclid step
if B = Int_0 then
-- No single precision steps take a regular Euclid step
Tmp_UI := U rem V;
U := V;
V := Tmp_UI;
else
-- Use prior single precision steps to compute this Euclid step
-- For constructs such as:
-- sqrt_2: constant := 1.41421_35623_73095_04880_16887_24209_698;
-- sqrt_eps: constant long_float := long_float( 1.0 / sqrt_2)
-- ** long_float'machine_mantissa;
--
-- we spend 80% of our time working on this step. Perhaps we need
-- a special case Int / Uint dot product to speed things up. ???
-- Alternatively we could increase the single precision iterations
-- to handle Uint's of some small size ( <5 digits?). Then we
-- would have more iterations on small Uint. On the code above, we
-- only get 5 (on average) single precision iterations per large
-- iteration. ???
Tmp_UI := (UI_From_Int (A) * U) + (UI_From_Int (B) * V);
V := (UI_From_Int (C) * U) + (UI_From_Int (D) * V);
U := Tmp_UI;
end if;
-- If the operands are very different in magnitude, the loop will
-- generate large amounts of short-lived data, which it is worth
-- removing periodically.
if Iterations > 100 then
Release_And_Save (Marks, U, V);
Iterations := 0;
end if;
end loop;
end UI_GCD;
------------
-- UI_Ge --
------------
function UI_Ge (Left : Int; Right : Uint) return Boolean is
begin
return not UI_Lt (UI_From_Int (Left), Right);
end UI_Ge;
function UI_Ge (Left : Uint; Right : Int) return Boolean is
begin
return not UI_Lt (Left, UI_From_Int (Right));
end UI_Ge;
function UI_Ge (Left : Uint; Right : Uint) return Boolean is
begin
return not UI_Lt (Left, Right);
end UI_Ge;
------------
-- UI_Gt --
------------
function UI_Gt (Left : Int; Right : Uint) return Boolean is
begin
return UI_Lt (Right, UI_From_Int (Left));
end UI_Gt;
function UI_Gt (Left : Uint; Right : Int) return Boolean is
begin
return UI_Lt (UI_From_Int (Right), Left);
end UI_Gt;
function UI_Gt (Left : Uint; Right : Uint) return Boolean is
begin
return UI_Lt (Left => Right, Right => Left);
end UI_Gt;
---------------
-- UI_Image --
---------------
procedure UI_Image (Input : Uint; Format : UI_Format := Auto) is
begin
Image_Out (Input, True, Format);
end UI_Image;
-------------------------
-- UI_Is_In_Int_Range --
-------------------------
function UI_Is_In_Int_Range (Input : Uint) return Boolean is
begin
-- Make sure we don't get called before Initialize
pragma Assert (Uint_Int_First /= Uint_0);
if Direct (Input) then
return True;
else
return Input >= Uint_Int_First
and then Input <= Uint_Int_Last;
end if;
end UI_Is_In_Int_Range;
------------
-- UI_Le --
------------
function UI_Le (Left : Int; Right : Uint) return Boolean is
begin
return not UI_Lt (Right, UI_From_Int (Left));
end UI_Le;
function UI_Le (Left : Uint; Right : Int) return Boolean is
begin
return not UI_Lt (UI_From_Int (Right), Left);
end UI_Le;
function UI_Le (Left : Uint; Right : Uint) return Boolean is
begin
return not UI_Lt (Left => Right, Right => Left);
end UI_Le;
------------
-- UI_Lt --
------------
function UI_Lt (Left : Int; Right : Uint) return Boolean is
begin
return UI_Lt (UI_From_Int (Left), Right);
end UI_Lt;
function UI_Lt (Left : Uint; Right : Int) return Boolean is
begin
return UI_Lt (Left, UI_From_Int (Right));
end UI_Lt;
function UI_Lt (Left : Uint; Right : Uint) return Boolean is
begin
-- Quick processing for identical arguments
if Int (Left) = Int (Right) then
return False;
-- Quick processing for both arguments directly represented
elsif Direct (Left) and then Direct (Right) then
return Int (Left) < Int (Right);
-- At least one argument is more than one digit long
else
declare
L_Length : constant Int := N_Digits (Left);
R_Length : constant Int := N_Digits (Right);
L_Vec : UI_Vector (1 .. L_Length);
R_Vec : UI_Vector (1 .. R_Length);
begin
Init_Operand (Left, L_Vec);
Init_Operand (Right, R_Vec);
if L_Vec (1) < Int_0 then
-- First argument negative, second argument non-negative
if R_Vec (1) >= Int_0 then
return True;
-- Both arguments negative
else
if L_Length /= R_Length then
return L_Length > R_Length;
elsif L_Vec (1) /= R_Vec (1) then
return L_Vec (1) < R_Vec (1);
else
for J in 2 .. L_Vec'Last loop
if L_Vec (J) /= R_Vec (J) then
return L_Vec (J) > R_Vec (J);
end if;
end loop;
return False;
end if;
end if;
else
-- First argument non-negative, second argument negative
if R_Vec (1) < Int_0 then
return False;
-- Both arguments non-negative
else
if L_Length /= R_Length then
return L_Length < R_Length;
else
for J in L_Vec'Range loop
if L_Vec (J) /= R_Vec (J) then
return L_Vec (J) < R_Vec (J);
end if;
end loop;
return False;
end if;
end if;
end if;
end;
end if;
end UI_Lt;
------------
-- UI_Max --
------------
function UI_Max (Left : Int; Right : Uint) return Uint is
begin
return UI_Max (UI_From_Int (Left), Right);
end UI_Max;
function UI_Max (Left : Uint; Right : Int) return Uint is
begin
return UI_Max (Left, UI_From_Int (Right));
end UI_Max;
function UI_Max (Left : Uint; Right : Uint) return Uint is
begin
if Left >= Right then
return Left;
else
return Right;
end if;
end UI_Max;
------------
-- UI_Min --
------------
function UI_Min (Left : Int; Right : Uint) return Uint is
begin
return UI_Min (UI_From_Int (Left), Right);
end UI_Min;
function UI_Min (Left : Uint; Right : Int) return Uint is
begin
return UI_Min (Left, UI_From_Int (Right));
end UI_Min;
function UI_Min (Left : Uint; Right : Uint) return Uint is
begin
if Left <= Right then
return Left;
else
return Right;
end if;
end UI_Min;
-------------
-- UI_Mod --
-------------
function UI_Mod (Left : Int; Right : Uint) return Uint is
begin
return UI_Mod (UI_From_Int (Left), Right);
end UI_Mod;
function UI_Mod (Left : Uint; Right : Int) return Uint is
begin
return UI_Mod (Left, UI_From_Int (Right));
end UI_Mod;
function UI_Mod (Left : Uint; Right : Uint) return Uint is
Urem : constant Uint := Left rem Right;
begin
if (Left < Uint_0) = (Right < Uint_0)
or else Urem = Uint_0
then
return Urem;
else
return Right + Urem;
end if;
end UI_Mod;
-------------------------------
-- UI_Modular_Exponentiation --
-------------------------------
function UI_Modular_Exponentiation
(B : Uint;
E : Uint;
Modulo : Uint) return Uint
is
M : constant Save_Mark := Mark;
Result : Uint := Uint_1;
Base : Uint := B;
Exponent : Uint := E;
begin
while Exponent /= Uint_0 loop
if Least_Sig_Digit (Exponent) rem Int'(2) = Int'(1) then
Result := (Result * Base) rem Modulo;
end if;
Exponent := Exponent / Uint_2;
Base := (Base * Base) rem Modulo;
end loop;
Release_And_Save (M, Result);
return Result;
end UI_Modular_Exponentiation;
------------------------
-- UI_Modular_Inverse --
------------------------
function UI_Modular_Inverse (N : Uint; Modulo : Uint) return Uint is
M : constant Save_Mark := Mark;
U : Uint;
V : Uint;
Q : Uint;
R : Uint;
X : Uint;
Y : Uint;
T : Uint;
S : Int := 1;
begin
U := Modulo;
V := N;
X := Uint_1;
Y := Uint_0;
loop
UI_Div_Rem (U, V, Quotient => Q, Remainder => R);
U := V;
V := R;
T := X;
X := Y + Q * X;
Y := T;
S := -S;
exit when R = Uint_1;
end loop;
if S = Int'(-1) then
X := Modulo - X;
end if;
Release_And_Save (M, X);
return X;
end UI_Modular_Inverse;
------------
-- UI_Mul --
------------
function UI_Mul (Left : Int; Right : Uint) return Uint is
begin
return UI_Mul (UI_From_Int (Left), Right);
end UI_Mul;
function UI_Mul (Left : Uint; Right : Int) return Uint is
begin
return UI_Mul (Left, UI_From_Int (Right));
end UI_Mul;
function UI_Mul (Left : Uint; Right : Uint) return Uint is
begin
-- Case where product fits in the range of a 32-bit integer
if Int (Left) <= Int (Uint_Max_Simple_Mul)
and then
Int (Right) <= Int (Uint_Max_Simple_Mul)
then
return UI_From_Int (Direct_Val (Left) * Direct_Val (Right));
end if;
-- Otherwise we have the general case (Algorithm M in Knuth)
declare
L_Length : constant Int := N_Digits (Left);
R_Length : constant Int := N_Digits (Right);
L_Vec : UI_Vector (1 .. L_Length);
R_Vec : UI_Vector (1 .. R_Length);
Neg : Boolean;
begin
Init_Operand (Left, L_Vec);
Init_Operand (Right, R_Vec);
Neg := (L_Vec (1) < Int_0) xor (R_Vec (1) < Int_0);
L_Vec (1) := abs (L_Vec (1));
R_Vec (1) := abs (R_Vec (1));
Algorithm_M : declare
Product : UI_Vector (1 .. L_Length + R_Length);
Tmp_Sum : Int;
Carry : Int;
begin
for J in Product'Range loop
Product (J) := 0;
end loop;
for J in reverse R_Vec'Range loop
Carry := 0;
for K in reverse L_Vec'Range loop
Tmp_Sum :=
L_Vec (K) * R_Vec (J) + Product (J + K) + Carry;
Product (J + K) := Tmp_Sum rem Base;
Carry := Tmp_Sum / Base;
end loop;
Product (J) := Carry;
end loop;
return Vector_To_Uint (Product, Neg);
end Algorithm_M;
end;
end UI_Mul;
------------
-- UI_Ne --
------------
function UI_Ne (Left : Int; Right : Uint) return Boolean is
begin
return UI_Ne (UI_From_Int (Left), Right);
end UI_Ne;
function UI_Ne (Left : Uint; Right : Int) return Boolean is
begin
return UI_Ne (Left, UI_From_Int (Right));
end UI_Ne;
function UI_Ne (Left : Uint; Right : Uint) return Boolean is
begin
-- Quick processing for identical arguments. Note that this takes
-- care of the case of two No_Uint arguments.
if Int (Left) = Int (Right) then
return False;
end if;
-- See if left operand directly represented
if Direct (Left) then
-- If right operand directly represented then compare
if Direct (Right) then
return Int (Left) /= Int (Right);
-- Left operand directly represented, right not, must be unequal
else
return True;
end if;
-- Right operand directly represented, left not, must be unequal
elsif Direct (Right) then
return True;
end if;
-- Otherwise both multi-word, do comparison
declare
Size : constant Int := N_Digits (Left);
Left_Loc : Int;
Right_Loc : Int;
begin
if Size /= N_Digits (Right) then
return True;
end if;
Left_Loc := Uints.Table (Left).Loc;
Right_Loc := Uints.Table (Right).Loc;
for J in Int_0 .. Size - Int_1 loop
if Udigits.Table (Left_Loc + J) /=
Udigits.Table (Right_Loc + J)
then
return True;
end if;
end loop;
return False;
end;
end UI_Ne;
----------------
-- UI_Negate --
----------------
function UI_Negate (Right : Uint) return Uint is
begin
-- Case where input is directly represented. Note that since the range
-- of Direct values is non-symmetrical, the result may not be directly
-- represented, this is taken care of in UI_From_Int.
if Direct (Right) then
return UI_From_Int (-Direct_Val (Right));
-- Full processing for multi-digit case. Note that we cannot just copy
-- the value to the end of the table negating the first digit, since the
-- range of Direct values is non-symmetrical, so we can have a negative
-- value that is not Direct whose negation can be represented directly.
else
declare
R_Length : constant Int := N_Digits (Right);
R_Vec : UI_Vector (1 .. R_Length);
Neg : Boolean;
begin
Init_Operand (Right, R_Vec);
Neg := R_Vec (1) > Int_0;
R_Vec (1) := abs R_Vec (1);
return Vector_To_Uint (R_Vec, Neg);
end;
end if;
end UI_Negate;
-------------
-- UI_Rem --
-------------
function UI_Rem (Left : Int; Right : Uint) return Uint is
begin
return UI_Rem (UI_From_Int (Left), Right);
end UI_Rem;
function UI_Rem (Left : Uint; Right : Int) return Uint is
begin
return UI_Rem (Left, UI_From_Int (Right));
end UI_Rem;
function UI_Rem (Left, Right : Uint) return Uint is
Remainder : Uint;
Quotient : Uint;
pragma Warnings (Off, Quotient);
begin
pragma Assert (Right /= Uint_0);
if Direct (Right) and then Direct (Left) then
return UI_From_Int (Direct_Val (Left) rem Direct_Val (Right));
else
UI_Div_Rem
(Left, Right, Quotient, Remainder, Discard_Quotient => True);
return Remainder;
end if;
end UI_Rem;
------------
-- UI_Sub --
------------
function UI_Sub (Left : Int; Right : Uint) return Uint is
begin
return UI_Add (Left, -Right);
end UI_Sub;
function UI_Sub (Left : Uint; Right : Int) return Uint is
begin
return UI_Add (Left, -Right);
end UI_Sub;
function UI_Sub (Left : Uint; Right : Uint) return Uint is
begin
if Direct (Left) and then Direct (Right) then
return UI_From_Int (Direct_Val (Left) - Direct_Val (Right));
else
return UI_Add (Left, -Right);
end if;
end UI_Sub;
--------------
-- UI_To_CC --
--------------
function UI_To_CC (Input : Uint) return Char_Code is
begin
if Direct (Input) then
return Char_Code (Direct_Val (Input));
-- Case of input is more than one digit
else
declare
In_Length : constant Int := N_Digits (Input);
In_Vec : UI_Vector (1 .. In_Length);
Ret_CC : Char_Code;
begin
Init_Operand (Input, In_Vec);
-- We assume value is positive
Ret_CC := 0;
for Idx in In_Vec'Range loop
Ret_CC := Ret_CC * Char_Code (Base) +
Char_Code (abs In_Vec (Idx));
end loop;
return Ret_CC;
end;
end if;
end UI_To_CC;
----------------
-- UI_To_Int --
----------------
function UI_To_Int (Input : Uint) return Int is
pragma Assert (Input /= No_Uint);
begin
if Direct (Input) then
return Direct_Val (Input);
-- Case of input is more than one digit
else
declare
In_Length : constant Int := N_Digits (Input);
In_Vec : UI_Vector (1 .. In_Length);
Ret_Int : Int;
begin
-- Uints of more than one digit could be outside the range for
-- Ints. Caller should have checked for this if not certain.
-- Fatal error to attempt to convert from value outside Int'Range.
pragma Assert (UI_Is_In_Int_Range (Input));
-- Otherwise, proceed ahead, we are OK
Init_Operand (Input, In_Vec);
Ret_Int := 0;
-- Calculate -|Input| and then negates if value is positive. This
-- handles our current definition of Int (based on 2s complement).
-- Is it secure enough???
for Idx in In_Vec'Range loop
Ret_Int := Ret_Int * Base - abs In_Vec (Idx);
end loop;
if In_Vec (1) < Int_0 then
return Ret_Int;
else
return -Ret_Int;
end if;
end;
end if;
end UI_To_Int;
--------------
-- UI_Write --
--------------
procedure UI_Write (Input : Uint; Format : UI_Format := Auto) is
begin
Image_Out (Input, False, Format);
end UI_Write;
---------------------
-- Vector_To_Uint --
---------------------
function Vector_To_Uint
(In_Vec : UI_Vector;
Negative : Boolean)
return Uint
is
Size : Int;
Val : Int;
begin
-- The vector can contain leading zeros. These are not stored in the
-- table, so loop through the vector looking for first non-zero digit
for J in In_Vec'Range loop
if In_Vec (J) /= Int_0 then
-- The length of the value is the length of the rest of the vector
Size := In_Vec'Last - J + 1;
-- One digit value can always be represented directly
if Size = Int_1 then
if Negative then
return Uint (Int (Uint_Direct_Bias) - In_Vec (J));
else
return Uint (Int (Uint_Direct_Bias) + In_Vec (J));
end if;
-- Positive two digit values may be in direct representation range
elsif Size = Int_2 and then not Negative then
Val := In_Vec (J) * Base + In_Vec (J + 1);
if Val <= Max_Direct then
return Uint (Int (Uint_Direct_Bias) + Val);
end if;
end if;
-- The value is outside the direct representation range and must
-- therefore be stored in the table. Expand the table to contain
-- the count and digits. The index of the new table entry will be
-- returned as the result.
Uints.Append ((Length => Size, Loc => Udigits.Last + 1));
if Negative then
Val := -In_Vec (J);
else
Val := +In_Vec (J);
end if;
Udigits.Append (Val);
for K in 2 .. Size loop
Udigits.Append (In_Vec (J + K - 1));
end loop;
return Uints.Last;
end if;
end loop;
-- Dropped through loop only if vector contained all zeros
return Uint_0;
end Vector_To_Uint;
end Uintp;
|