This file is indexed.

/usr/include/Gyoto/GyotoScreen.h is in libgyoto1-dev 0.1.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
/**
 * \file GyotoScreen.h
 * \brief Description of the observer screen
 * 
 */

/*
    Copyright 2011-2013 Thibaut Paumard, Frederic Vincent

    This file is part of Gyoto.

    Gyoto is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    Gyoto is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Gyoto.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef __GyotoScreen_H_
#define __GyotoScreen_H_ 

#include <iostream>
#include <fstream>
#include <string>

namespace Gyoto {
  class Screen;
}

#include <GyotoDefs.h>
#include <GyotoUtils.h>
#include <GyotoSmartPointer.h>
#include <GyotoMetric.h>
#include <GyotoSpectrometer.h>

/**
 * \class Gyoto::Screen
 * \brief The camera with which the Astrobj is observed
 *
 * In the observer-centric point-of-view, the center of the Metric's
 * coordinate system is positioned relatively to the observing Screen
 * using three Euler angles and the distance (in meters). The three
 * Euler angles are:
 *   - position angle of the line of nodes (North of East);
 *   - inclination (0 = face-on);
 *   - argument of the X axis of the Metric's coordinate system.
 *  We use the z-x-z convention.
 *  See http://en.wikipedia.org/wiki/Euler_angles
 *
 * In addition, the Screen conveys:
 *   - the observing date (in geometrical units, but expect it to
 *     change to seconds in a future version);
 *   - the field-of-view of the image;
 *   - the resolution of the camera: number of pixels on each side
 *     (the camera is square);
 *   - the observing frequency.
 *
 * The scalar FreqObs defines the observing frequency for Scenery
 * quantity Intensity.
 *
 * Likewise, a Gyoto::Spectrometer defines for which frequencies
 * spectra are computed (when the Quantity Spectrum is requested in
 * the Scenery).
 * 
 * For the sake of theoreticians, there is an alternate way of
 * specifying the relative position of the Screen and Metric, by
 * specifying the 4-coordinates of the Screen in the Metric's
 * coordinate system (in that case, eerything is specified in
 * geometrical units).
 *
 * So an XML stanza for a Screen may look like that:
 * \code
 *  <Screen>
 *    <Time>       1000.      </Time>
 *    <FieldOfView>   0.3141592653589793 </FieldOfView>
 *    <Resolution>  128       </Resolution>
 *    <Distance>      1e30    </Distance>
 *    <PALN>          3.14159 </PALN>
 *    <Inclination>   2.0944  </Inclination>
 *    <Argument>     -2.0944  </Argument>
 *    <Spectrometer kind="freqlog" nsamples="10"> 17. 23. </Spectrometer> 
 *    <FreqObs>       1e20    </FreqObs>
 *  </Screen>
 * \endcode
 *
 * or like that:
 *
 * \code
 *  <Screen>
 *    <Position> 1000. 1000. 0.15. 0.</Position>
 *    <FieldOfView>   0.3141592653589793 </FieldOfView>
 *    <Resolution>  128 </Resolution>
 *    <Spectrometer kind="freqlog" nsamples="10"> 17. 23. </Spectrometer> 
 *    <FreqObs>       1e20    </FreqObs>
 *  </Screen>
 * \endcode
 *
 *
 * Units can be specified using the unit attribute in the XML file,
 * for instance:
 * 
 * \code
 *   <Distance unit="kpc"> 8 </Distance>
 * \endcode
 *
 * Possible units are (with [] noting the default):
 *  - distance: [m], geometrical, cm, km, AU, ly, pc, kpc, Mpc;
 *  - PALN, inclination, argument: [rad], deg.
 *  - frequency: [Hz], µm, GeV...
 *
 * When the distance is really large and most of the ray-tracing would
 * happen de facto in flat space, the camera is transported to a
 * location at a reasonable distance from the metric and the images
 * are scaled accordingly. The default value for this distance should
 * be fine, but it can be customized using the "dmax" attribute of the
 * "Distance" element. "dmax" is always expressed in geometrical
 * units:
 *
 * \code
 *    <Distance unit="kpc" dmax="1e7"> 8 </Distance>
 * \endcode
 *
 * Symptoms when dmax is too large include pixelization of the image
 * (neighbouring photons are numerically identical) and other
 * numerical overflows. dmax is too small when it is apparent that
 * changing it yields projection effects. dmax must be large compared
 * to rmax in the Astrobj and ideally, changing it by an order of
 * magnitude should not yield significant changes in the ray-traced
 * image.
 *
 */
class Gyoto::Screen : protected Gyoto::SmartPointee {
  friend class Gyoto::SmartPointer<Gyoto::Screen>;

 private:
  double tobs_; ///< Observing date in s
  double fov_;  ///< Field-of-view in rad
  //  double tmin_;
  size_t npix_; ///< Resolution in pixels

  double distance_; ///< Distance to the observer in m
  double dmax_; ///< Maximum distance from which the photons are launched (geometrical units) 

  int anglekind_; ///< Screen angles kind (0: equatorial, 1: spherical)
  
  /**
   * The angles are position angle of the line of nodes (North of
   * East), inclination (0 = face-on), argument of X axis. We use the
   * z-x-z convention. See http://en.wikipedia.org/wiki/Euler_angles
   */
  double euler_[3]; ///< Euler angles
  double ex_[3]; ///< Sky coordinate of base X vector
  double ey_[3]; ///< Sky coordinate of base Y vector
  double ez_[3]; ///< Sky coordinate of base Z vector

  double fourvel_[4]; ///< Observer's 4-velocity
  double screen1_[4]; ///< Screen e1 vector
  double screen2_[4]; ///< Screen e2 vector
  double screen3_[4]; ///< Screen e3 vector (normal)

  double alpha0_; ///< Screen orientation (0,0) is right towards the BH
  double delta0_; ///< Screen orientation (0,0) is right towards the BH
  SmartPointer<Metric::Generic> gg_; ///< The Metric in this end of the Universe

  /**
   * \brief Gyoto::Spectrometer::Generic subclass instance used for quantities Spectrum and BinSpectrum
   */
  SmartPointer<Spectrometer::Generic> spectro_;

  /**
   * \brief Frequency at which the observer observes
   *
   * For the quantity Intensity
   */
  double freq_obs_;

 public:
   
  // Constructors - Destructor
  // -------------------------
  Screen() ; ///< Default constructor
  Screen(const Screen& ) ;                ///< Copy constructor
  Screen * clone() const; ///< Cloner

  virtual ~Screen() ;                        ///< Destructor
  
  // Mutators / assignment
  // ---------------------

  /// Set inclination etc.
  void setProjection(const double paln,
		     const double inclination,
		     const double argument);
  /// Set distance, inclination etc.
  void setProjection(const double distance,
		     const double paln,
		     const double inclination,
		     const double argument);

  /// Set distance from observer
  /**
   * \param dist Distance in meters.
   */
  void setDistance(double dist);

  /// Set ray-tracing maximum distance
  /**
   * \param dist Distance in geometrical units.
   */
  void setDmax(double dist);

  /// Set distance from observer
  /**
   * \param dist the distance expressed in the specified unit;
   * \param unit convertible to meters
   */
  void setDistance(double dist, const std::string unit);

  /// Set inclination relative to line-of-sight
  /**
   * Inclination of z-axis relative to line-of-sight, or inclination
   * of equatorial plane relative to plane of the sky, in radians
   */
  void setInclination(double);

  /// Set inclination relative to line-of-sight
  /**
   * Inclination of z-axis relative to line-of-sight, or inclination
   * of equatorial plane relative to plane of the sky, in specified unit.
   */
  void setInclination(double, const std::string &unit);

  void setPALN(double);
           ///< Set position angle of the line of nodes
  void setPALN(double, const std::string &unit);
           ///< Set position angle of the line of nodes
  void setArgument(double);
           ///< Set angle beetwen line of nodes and X axis of object
  void setArgument(double, const std::string &unit);
           ///< Set angle beetwen line of nodes and X axis of object
  void setSpectrometer(SmartPointer<Spectrometer::Generic> spectro);
           ///< Set Screen::spectro_
  SmartPointer<Spectrometer::Generic> getSpectrometer() const ;
           ///< Get Screen::spectro_

  /**
   * \brief Set freq_obs_
   * \param fo double: observing frequency in Hz
   */
  void setFreqObs(double fo);


  /**
   * \brief Set freq_obs_
   * \param fo double: observing frequency (or wavelength) in "unit"
   * \param unit string: unit in which fo is expressed, convertable to
   * Herz or meters or energy.
   */
  void setFreqObs(double fo, const std::string &unit);

  /**
   * \brief Get freq_obs_.
   */
  double getFreqObs() const ;

  /**
   * \brief Get freq_obs_.
   * \param unit string: unit in which freq_obs_ should be returned is
   * expressed, convertable to Herz or meters or energy.
   */
  double getFreqObs(const std::string &unit) const;

  /// Alternative way to set projection
  /**
   * Beware : paln can not be set this way, setting later other
   * parameters change the observer's coordinates. For observationnal
   * ray-tracing purposes, prefer setProjection().
   *
   * \param[in] pos position of observer in Screen's coordinate
   * system. Content is copied.
   */
  void setObserverPos(const double pos[4]);

  void setFourVel(const double coord[4]);
  ///< Sets the observer's 4-velocity
  void setScreen1(const double coord[4]);
  ///< Sets the screen vector e1
  void setScreen2(const double coord[4]);
  ///< Sets the screen vector e2
  void setScreen3(const double coord[4]);
  ///< Sets the screen vector e3 (normal)

  // Accessors
  // ---------

  /// Get coordinate kind
  /**
   * From Screen::gg_.
   */
  int getCoordKind() const;

  /// Get distance from observer
  /**
   * In meters.
   */
  double getDistance() const;

  /// Get distance from observer
  /**
   * In specified unit.
   */
  double getDistance(const std::string&) const;	 ///< Get distance from observer

  /// Get maximum ray-tracing distance
  /**
   * In geometrical units.
   */
  double getDmax() const;

  /// Get inclination relative to line-of-sight
  /**
   * Inclination of z-axis relative to line-of-sight, or inclination
   * of equatorial plane relative to plane of the sky, in radians.
   */
  double getInclination() const;

  /// Get inclination relative to line-of-sight
  /**
   * Inclination of z-axis relative to line-of-sight, or inclination
   * of equatorial plane relative to plane of the sky, in specified unit.
   */
  double getInclination(const std::string&) const;

  double getPALN() const;	 ///< Get position angle of the line of nodes
  double getPALN(const std::string&) const;	 ///< Get position angle of the line of nodes
  double getArgument() const;	 ///< Get angle between line of nodes and X axis of object
  double getArgument(const std::string&) const;	 ///< Get angle between line of nodes and X axis of object

  SmartPointer<Metric::Generic> getMetric() const; ///< Get Screen::gg_
  void setMetric(SmartPointer<Metric::Generic> gg); ///< Set Screen::gg_

  /// Get observing date in seconds
  double getTime();

  /// Get observing date in seconds
  double getTime(const std::string &);

  /// Set observing date in specified unit
  void setTime(double, const std::string &);

  /// Set observing date in seconds
  void setTime(double);

  /// Get Screen::fov_ in radians
  double getFieldOfView();

  /// Get Screen::fov_ in specified unit
  double getFieldOfView(std::string unit);

  /// Set Screen::fov_ in radians
  void setFieldOfView(double);

  /// Set Screen::fov_ in specified unit
  void setFieldOfView(double, const std::string &unit);

  /// Set direction of the line-of-view
  void setAlpha0(double);
  /// Set direction of the line-of-view
  void setDelta0(double);

  /// Set Screen::anglekind_
  void setAnglekind(int);

  /// Get Screen::npix_
  size_t getResolution();
  /// Set Screen::npix_
  void setResolution(size_t);

  /// 4-Position of the observer relative to the metric
  /**
   * A Screen is positioned relative to the observer with four elements:
   * Screen::distance, Screen::inclination, Screen::paln and
   * Screen::argument.
   *
   * This function returns the position of the observer relative to
   * the metric system in Screen::gg_, using these parameters. The
   * output parameter is coord.
   *
   * \param[out] coord position of the observer. Must be preallocated.
   */
  void getObserverPos(double coord[]) const;

  /// Get copy of Screen::fourvel_
  /**
   * \param[out] fourvel preallocated 4-element array
   */
  void getFourVel(double fourvel[]) const;

  /// Get copy of Screen::screen1_
  /**
   * \param[out] output preallocated 4-element array
   */
  void getScreen1(double output[]) const;

  /// Get copy of Screen::screen2_
  /**
   * \param[out] output preallocated 4-element array
   */
  void getScreen2(double output[]) const;

  /// Get copy of Screen::screen3_
  /**
   * \param[out] output preallocated 4-element array
   */
  void getScreen3(double output[]) const;

  /// Get 8-coordinate of Photon hitting screen from a given direction
  /**
   * Similar to Screen::getObserverPos() but will return in addition
   * the 4-velocity of a photon corresponding to the sky direction
   * given by x and y.
   * \param[in] x    RA (d_alpha*cos(delta)) offset in radians;
   * \param[in] y    Dec offset (d_delta) in radians; 
   * \param[out] coord position-velocity of the observer Photon. Preallocated.
   * 
   */
  void getRayCoord(double x, double y, double coord[]) const;

  /// Get 8-coordinate of Photon hitting screen pixel
  /**
   * Similar to Screen::getObserverPos() but will return in addition
   * the 4-velocity of a photon corresponding to the sky direction
   * given by x and y.
   * \param[in] i, j pixel coordinates   
   * \param[out] coord position-velocity of the Photon. Preallocated.
   * 
   */
  void getRayCoord(const size_t i, const size_t j, double coord[]) const;
  
  void coordToSky(const double pos[4], double skypos[3]) const;
  ///< Convert 4-position to 3-sky position

  void coordToXYZ(const double pos[4], double xyz[3]) const;
  ///< Convert 4-position to 3-cartesian coordinates

  void computeBaseVectors() ;
  ///< Compute base vectors according to projection parameters

  /// Display
  //  friend std::ostream& operator<<(std::ostream& , const Screen& ) ;
  std::ostream& print(std::ostream&) const ; ///< Debug helper
  std::ostream& printBaseVectors(std::ostream&) const ; ///< Debug helper

  // UDUNITS
# ifdef HAVE_UDUNITS
  /// Map "pix" and "pixel" to angular pixel width in unit system
  /**
   * "pix" or "pixel" can then be used in units.
   *
   * There is only one unit system in Gyoto: "pix" can therefore be
   * registered only for one Screen at a time. See Gyoto::Units.
   * 
   * The unit must later be unmapped with unmapPixUnit().
   */
  void mapPixUnit();

  /// Unmap "pix" and "pixel" from unit system
  /**
   * See also mapPixUnit().
   */
  void unmapPixUnit();
# endif


#ifdef GYOTO_USE_XERCES
 public:
    void fillElement(FactoryMessenger *fmp); ///< called from Factory
    /// Instanciate a Screen from XML entity 
    static   SmartPointer<Screen> Subcontractor(FactoryMessenger* fmp);
#endif


};

#endif