/usr/include/InsightToolkit/Numerics/itkAmoebaOptimizer.h is in libinsighttoolkit3-dev 3.20.1+git20120521-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkAmoebaOptimizer.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkAmoebaOptimizer_h
#define __itkAmoebaOptimizer_h
#include "itkSingleValuedNonLinearVnlOptimizer.h"
#include "vnl/algo/vnl_amoeba.h"
namespace itk
{
/** \class AmoebaOptimizer
* \brief Wrap of the vnl_amoeba algorithm
*
* AmoebaOptimizer is a wrapper around the vnl_amoeba algorithm which
* is an implementation of the Nelder-Meade downhill simplex
* problem. For most problems, it is a few times slower than a
* Levenberg-Marquardt algorithm but does not require derivatives of
* its cost function. It works by creating a simplex (n+1 points in
* ND space). The cost function is evaluated at each corner of the
* simplex. The simplex is then modified (by reflecting a corner
* about the opposite edge, by shrinking the entire simplex, by
* contracting one edge of the simplex, or by expanding the simplex)
* in searching for the minimum of the cost function.
*
* The methods AutomaticInitialSimplex() and SetInitialSimplexDelta()
* control whether the optimizer defines the initial simplex
* automatically (by constructing a very small simplex around the
* initial position) or uses a user supplied simplex size.
*
* AmoebaOptimizer can only minimize a function.
*
* \ingroup Numerics Optimizers
*/
class ITK_EXPORT AmoebaOptimizer :
public SingleValuedNonLinearVnlOptimizer
{
public:
/** Standard "Self" typedef. */
typedef AmoebaOptimizer Self;
typedef SingleValuedNonLinearVnlOptimizer Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro( AmoebaOptimizer, SingleValuedNonLinearVnlOptimizer );
/** Parameters type.
* It defines a position in the optimization search space. */
typedef Superclass::ParametersType ParametersType;
/** InternalParameters typedef. */
typedef vnl_vector<double> InternalParametersType;
/** Internal optimizer type. */
typedef vnl_amoeba InternalOptimizerType;
/** Method for getting access to the internal optimizer. */
vnl_amoeba * GetOptimizer(void);
/** Start optimization with an initial value. */
void StartOptimization( void );
/** Plug in a Cost Function into the optimizer */
virtual void SetCostFunction( SingleValuedCostFunction * costFunction );
/** Set/Get the maximum number of iterations. The optimization algorithm will
* terminate after the maximum number of iterations has been reached.
* The default value is 500. */
virtual void SetMaximumNumberOfIterations( unsigned int n );
itkGetConstMacro( MaximumNumberOfIterations, unsigned int );
/** Set/Get the mode which determines how the amoeba algorithm
* defines the initial simplex. Default is
* AutomaticInitialSimplexOn. If AutomaticInitialSimplex is on, the
* initial simplex is created with a default size. If
* AutomaticInitialSimplex is off, then InitialSimplexDelta will be
* used to define the initial simplex, setting the ith corner of the
* simplex as [x0[0], x0[1], ..., x0[i]+InitialSimplexDelta[i], ...,
* x0[d-1]]. */
itkSetMacro(AutomaticInitialSimplex, bool);
itkBooleanMacro(AutomaticInitialSimplex);
itkGetConstMacro(AutomaticInitialSimplex, bool);
/** Set/Get the deltas that are used to define the initial simplex
* when AutomaticInitialSimplex is off. */
itkSetMacro(InitialSimplexDelta, ParametersType);
itkGetConstMacro(InitialSimplexDelta, ParametersType);
/** The optimization algorithm will terminate when the simplex
* diameter and the difference in cost function at the corners of
* the simplex falls below user specified thresholds. The simplex
* diameter threshold is set via method
* SetParametersConvergenceTolerance() with the default value being
* 1e-8. The cost function convergence threshold is set via method
* SetFunctionConvergenceTolerance() with the default value being
* 1e-4. */
virtual void SetParametersConvergenceTolerance( double tol );
itkGetConstMacro( ParametersConvergenceTolerance, double );
virtual void SetFunctionConvergenceTolerance( double tol );
itkGetConstMacro( FunctionConvergenceTolerance, double );
/** Report the reason for stopping. */
const std::string GetStopConditionDescription() const;
/** Return Current Value */
MeasureType GetValue() const;
protected:
AmoebaOptimizer();
virtual ~AmoebaOptimizer();
void PrintSelf(std::ostream& os, Indent indent) const;
typedef Superclass::CostFunctionAdaptorType CostFunctionAdaptorType;
private:
AmoebaOptimizer(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
bool m_OptimizerInitialized;
InternalOptimizerType * m_VnlOptimizer;
unsigned int m_MaximumNumberOfIterations;
double m_ParametersConvergenceTolerance;
double m_FunctionConvergenceTolerance;
bool m_AutomaticInitialSimplex;
ParametersType m_InitialSimplexDelta;
OStringStream m_StopConditionDescription;
};
} // end namespace itk
#endif
|