This file is indexed.

/usr/include/InsightToolkit/Numerics/itkOnePlusOneEvolutionaryOptimizer.h is in libinsighttoolkit3-dev 3.20.1+git20120521-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkOnePlusOneEvolutionaryOptimizer.h
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkOnePlusOneEvolutionaryOptimizer_h
#define __itkOnePlusOneEvolutionaryOptimizer_h

#include <itkSingleValuedNonLinearOptimizer.h>
#include <itkRandomVariateGeneratorBase.h>
#include <string>

namespace itk
{

/** \class OnePlusOneEvolutionaryOptimizer
 * \brief 1+1 evolutionary strategy optimizer
 *
 * This optimizer searches for the optimal parameters. It changes its search
 * radius and position using the grow factor ,shrink factor, and isotropic 
 * probability function (which is a random unit normal variate generator).   
 *
 * This optimizer needs a cost function and a random unit normal 
 * variate generator.
 * The cost function should return cost with new position in parameter space
 * which will be generated by 1+1 evolutionary strategy.
 * Users should plug-in the random unit normal variate generator using 
 * SetNormalVariateGenerator method.
 *
 * The SetEpsilon method is the minimum value for the frobenius_norm of 
 * the covariance matrix. If the fnorm is smaller than this value, 
 * the optimization process will stop even before it hits the maximum 
 * iteration.
 *
 * Another way to stop the optimization process is calling the 
 * StopOptimization method. At next iteration after calling it, the
 * optimization process will stop.
 *
 * This optimizing scheme was initially developed and implemented 
 * by Martin Styner, Univ. of North Carolina at Chapel Hill, and his
 * colleagues.
 *
 * For more details. refer to the following articles.
 * "Parametric estimate of intensity inhomogeneities applied to MRI" 
 * Martin Styner, G. Gerig, Christian Brechbuehler, Gabor Szekely,  
 * IEEE TRANSACTIONS ON MEDICAL IMAGING; 19(3), pp. 153-165, 2000, 
 * (http://www.cs.unc.edu/~styner/docs/tmi00.pdf)
 *
 * "Evaluation of 2D/3D bias correction with 1+1ES-optimization" 
 * Martin Styner, Prof. Dr. G. Gerig (IKT, BIWI, ETH Zuerich), TR-197
 * (http://www.cs.unc.edu/~styner/docs/StynerTR97.pdf)
 *
 * \ingroup Numerics Optimizers
 *
 * \sa NormalVariateGenerator 
 */

class ITK_EXPORT OnePlusOneEvolutionaryOptimizer: 
    public SingleValuedNonLinearOptimizer
{
public:
  /** Standard "Self" typedef. */
  typedef OnePlusOneEvolutionaryOptimizer     Self;
  typedef SingleValuedNonLinearOptimizer      Superclass;
  typedef SmartPointer<Self>                  Pointer;
  typedef SmartPointer<const Self>            ConstPointer;
  
  /** Method for creation through the object factory. */
  itkNewMacro(Self);
 
  /** Run-time type information (and related methods). */
  itkTypeMacro(OnePlusOneEvolutionaryOptimizer, SingleValuedNonLinearOptimizer );
  
  /** Type of the Cost Function   */
  typedef  SingleValuedCostFunction         CostFunctionType;
  typedef  CostFunctionType::Pointer        CostFunctionPointer;

  /** Normal random variate generator type. */
  typedef Statistics::RandomVariateGeneratorBase NormalVariateGeneratorType;
  
  /** Set if the Optimizer should Maximize the metric */
  itkSetMacro( Maximize, bool );
  itkBooleanMacro( Maximize );
  itkGetConstReferenceMacro( Maximize, bool );

  bool GetMinimize( ) const
    { return !m_Maximize; }
  void SetMinimize(bool v)
    { this->SetMaximize(!v); }
  void    MinimizeOn(void) 
    { SetMaximize( false ); }
  void    MinimizeOff(void) 
    { SetMaximize( true ); }

  /** Set/Get maximum iteration limit. */
  itkSetMacro( MaximumIteration, unsigned int );
  itkGetConstReferenceMacro( MaximumIteration, unsigned int );

  /** Set/Get the search radius grow factor in parameter space. */
  itkSetMacro( GrowthFactor, double );
  itkGetConstReferenceMacro( GrowthFactor, double );

  /** Set/Get the search radius shrink factor. */
  itkSetMacro( ShrinkFactor, double );
  itkGetConstReferenceMacro( ShrinkFactor, double );

  /** Set/Get initial search radius in parameter space */
  itkSetMacro( InitialRadius, double );
  itkGetConstReferenceMacro( InitialRadius, double );


  /** Set/Get the minimal size of search radius 
   * (frobenius_norm of covariance matrix). */
  itkSetMacro( Epsilon, double );   
  itkGetConstReferenceMacro( Epsilon, double );   

  /** Get the current Frobenius norm of covariance matrix */
  itkGetConstReferenceMacro( FrobeniusNorm, double );   

  void SetNormalVariateGenerator(NormalVariateGeneratorType* generator);

  /** Initializes the optimizer.
   * Before running this optimizer, this function should have been called.
   *
   * initialRadius: search radius in parameter space
   * grow: search radius grow factor
   * shrink: searhc radius shrink factor */
  void Initialize(double initialRadius, double grow = -1, double shrink = -1);

  /** Return Current Value */
  itkGetConstReferenceMacro( CurrentCost, MeasureType );
  MeasureType GetValue() const { return this->GetCurrentCost(); }

  /** Return Current Iteration */
  itkGetConstReferenceMacro( CurrentIteration, unsigned int);

  /** Return if optimizer has been initialized */
  itkGetConstReferenceMacro( Initialized, bool);

  /** Start optimization.
   * Optimization will stop when it meets either of two termination conditions,
   * the maximum iteration limit or epsilon (minimal search radius)  */
  void StartOptimization();

  /** when users call StartOptimization, this value will be set false.
   * By calling StopOptimization, this flag will be set true, and 
   * optimization will stop at the next iteration. */
  void StopOptimization() 
    { m_Stop = true; }

  itkGetConstReferenceMacro(CatchGetValueException, bool);
  itkSetMacro(CatchGetValueException, bool);

  itkGetConstReferenceMacro(MetricWorstPossibleValue, double);
  itkSetMacro(MetricWorstPossibleValue, double);

  const std::string GetStopConditionDescription() const;

protected:
  OnePlusOneEvolutionaryOptimizer();
  OnePlusOneEvolutionaryOptimizer(const OnePlusOneEvolutionaryOptimizer&);
  virtual ~OnePlusOneEvolutionaryOptimizer();
  void PrintSelf(std::ostream& os, Indent indent) const;

private:
  
  /** Smart pointer to the normal random variate generator. */
  NormalVariateGeneratorType::Pointer m_RandomGenerator;

  /** Maximum iteration limit. */
  unsigned int m_MaximumIteration;

  /** Current iteration */
  unsigned int m_CurrentIteration;

  bool               m_CatchGetValueException;
  double             m_MetricWorstPossibleValue;

  /** Set if the Metric should be maximized: Default = False */
  bool m_Maximize;

  /** The minimal size of search radius 
   * (frobenius_norm of covariance matrix). */ 
  double m_Epsilon;

  /** Initial search radius in paramter space. */
  double m_InitialRadius;

  /** Search radius growth factor in parameter space. */
  double m_GrowthFactor;

  /** Search radius shrink factor in parameter space, */
  double m_ShrinkFactor;

  /** Flag tells if the optimizer was initialized using Initialize function. */
  bool m_Initialized;

  /** Internal storage for the value type / used as a cache  */
  MeasureType       m_CurrentCost;

  /** This is user-settable flag to stop optimization.
   * when users call StartOptimization, this value will be set false.
   * By calling StopOptimization, this flag will be set true, and 
   * optimization will stop at the next iteration. */
  bool m_Stop;

  /** Stop description */
  OStringStream m_StopConditionDescription;

  /** Cache variable for reporting the Frobenius Norm
   */
  double m_FrobeniusNorm;
  
}; // end of class

} // end of namespace itk

#endif