This file is indexed.

/usr/include/InsightToolkit/Numerics/itkSPSAOptimizer.h is in libinsighttoolkit3-dev 3.20.1+git20120521-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkSPSAOptimizer.h
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkSPSAOptimizer_h
#define __itkSPSAOptimizer_h

#include "itkSingleValuedNonLinearOptimizer.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"


namespace itk
{
  
/**
 * \class SPSAOptimizer
 * \brief An optimizer based on simultaneous perturbation...
 *
 * This optimizer is an implementation of the Simultaneous
 * Perturbation Stochastic Approximation method, described in:
 * 
 * - http://www.jhuapl.edu/SPSA/
 *
 * - Spall, J.C. (1998), "An Overview of the Simultaneous
 * Perturbation Method for Efficient Optimization," Johns
 * Hopkins APL Technical Digest, vol. 19, pp. 482-492
 *
 * \ingroup Optimizers
 */
  
class ITK_EXPORT SPSAOptimizer
  : public SingleValuedNonLinearOptimizer
{
public:
    
  /** Standard class typedefs. */
  typedef SPSAOptimizer                  Self;
  typedef SingleValuedNonLinearOptimizer Superclass;
  typedef SmartPointer<Self>             Pointer;
  typedef SmartPointer<const Self>       ConstPointer;
    
  /** Method for creation through the object factory. */
  itkNewMacro( Self );
    
  /** Run-time type information (and related methods). */
  itkTypeMacro( SPSAOptimizer, SingleValuedNonLinearOptimizer );
    
  /** Codes of stopping conditions */
  typedef enum {
    Unknown,
    MaximumNumberOfIterations,
    BelowTolerance,
    MetricError  } StopConditionType;
  
  /** Advance one step following the gradient direction. */
  virtual void AdvanceOneStep( void );
    
  /** Start optimization. */
  void StartOptimization( void );
    
  /** Resume previously stopped optimization with current parameters
   * \sa StopOptimization. */
  void ResumeOptimization( void );
    
  /** Stop optimization.
   * \sa ResumeOptimization */
  void StopOptimization( void );
    
  /** Get the cost function value at the current position. */
  virtual MeasureType GetValue( void ) const;

  /** Get the cost function value at any position */
  virtual MeasureType GetValue( const ParametersType & parameters ) const;

  /** Guess the parameters a and A. This function needs the 
   * number of GradientEstimates used for estimating a and A and 
   * and the expected initial step size (where step size is
   * defined as the maximum of the absolute values of the 
   * parameter update). Make sure you set c, Alpha, Gamma, 
   * the MaximumNumberOfIterations, the Scales, and the 
   * the InitialPosition before calling this method.
   *
   * Described in:
   * Spall, J.C. (1998), "Implementation of the Simultaneous Perturbation 
   * Algorithm for Stochastic Optimization", IEEE Trans. Aerosp. Electron.
   * Syst. 34(3), 817-823.
   */
  virtual void GuessParameters(
    unsigned long numberOfGradientEstimates,
    double initialStepSize);

  /** Get the current iteration number. */
  itkGetConstMacro( CurrentIteration, unsigned long );
    
  /** Get Stop condition. */
  itkGetConstMacro( StopCondition, StopConditionType );

  /** Get the current LearningRate (a_k) */
  itkGetConstMacro( LearningRate, double);

  /** Get the GradientMagnitude of the latest computed gradient */
  itkGetConstMacro( GradientMagnitude, double);
    
  /** Get the latest computed gradient */
  itkGetConstReferenceMacro( Gradient, DerivativeType);

  /** Set/Get a. */
  itkSetMacro( Sa, double );
  itkGetConstMacro( Sa, double );
  // For backward compatibility
  void Seta (double a) { SetSa(a);}
  double Geta () {return GetSa();}

  /** Set/Get c. */
  itkSetMacro( Sc, double );
  itkGetConstMacro( Sc, double );
  // For backward compatibility
  void Setc (double c) {SetSc(c);}
  double Getc () {return GetSc();}
    
  /** Set/Get A. */
  itkSetMacro( A, double );
  itkGetConstMacro( A, double );
    
  /** Set/Get alpha. */
  itkSetMacro( Alpha, double );
  itkGetConstMacro( Alpha, double );
    
  /** Set/Get gamma. */
  itkSetMacro( Gamma, double );
  itkGetConstMacro( Gamma, double );

  /** Methods to configure the cost function. */
  itkGetConstMacro( Maximize, bool );
  itkSetMacro( Maximize, bool );
  itkBooleanMacro( Maximize );
  bool GetMinimize( ) const
    { return !m_Maximize; }
  void SetMinimize(bool v)
    { this->SetMaximize(!v); }
  void MinimizeOn()
    { this->MaximizeOff(); }
  void MinimizeOff()
    { this->MaximizeOn(); }

  /** Set/Get the number of perturbation used to construct
   * a gradient estimate g_k.
   * q = NumberOfPerturbations
   * g_k = 1/q sum_{j=1..q} g^(j)_k
   */
  itkSetMacro( NumberOfPerturbations, unsigned long );
  itkGetConstMacro( NumberOfPerturbations, unsigned long );


  /**
   * Get the state of convergence in the last iteration. When the
   * StateOfConvergence is lower than the Tolerance, and the minimum
   * number of iterations has been performed, the optimization
   * stops.
   * 
   * The state of convergence (SOC) is initialized with 0.0 and 
   * updated after each iteration as follows:
   *   SOC *= SOCDecayRate
   *   SOC += a_k * GradientMagnitude
   */
  itkGetConstMacro( StateOfConvergence, double );

  /** Set/Get StateOfConvergenceDecayRate (number between 0 and 1). */
  itkSetMacro( StateOfConvergenceDecayRate, double );
  itkGetConstMacro( StateOfConvergenceDecayRate, double );

  /** Set/Get the minimum number of iterations */
  itkSetMacro( MinimumNumberOfIterations, unsigned long);
  itkGetConstMacro( MinimumNumberOfIterations, unsigned long);
  
  /** Set/Get the maximum number of iterations. */
  itkSetMacro( MaximumNumberOfIterations, unsigned long );
  itkGetConstMacro( MaximumNumberOfIterations, unsigned long );
   
  /** Set/Get Tolerance */
  itkSetMacro(Tolerance, double);
  itkGetConstMacro(Tolerance, double);
    
  /** Get the reason for termination */
  const std::string GetStopConditionDescription() const;

protected:

  SPSAOptimizer();
  virtual ~SPSAOptimizer() {};

  /** PrintSelf method. */
  void PrintSelf( std::ostream& os, Indent indent ) const;
    
  /** Variables updated during optimization */
  DerivativeType               m_Gradient; 
  double                       m_LearningRate;
  DerivativeType               m_Delta;
  bool                         m_Stop;
  StopConditionType            m_StopCondition;
  double                       m_StateOfConvergence;
  unsigned long                m_CurrentIteration;

  /** Random number generator */
  Statistics::MersenneTwisterRandomVariateGenerator::Pointer m_Generator;
    
  /** Method to compute the learning rate at iteration k (a_k). */
  virtual double Compute_a( unsigned long k ) const;

  /**
   * Method to compute the gain factor for the perturbation
   * at iteration k (c_k).
   */
  virtual double Compute_c( unsigned long k ) const;
  
  /** Method to generate a perturbation vector. Takes scales into account. */
  virtual void GenerateDelta( const unsigned int spaceDimension );
  
  /** 
   * Compute the gradient at a position. m_NumberOfPerturbations are used, 
   * and scales are taken into account.
   */
  virtual void ComputeGradient(
    const ParametersType & parameters,
    DerivativeType & gradient);
    
private:

  SPSAOptimizer( const Self& );    // purposely not implemented
  void operator=( const Self& );  // purposely not implemented
    
  /** Settings.*/
  unsigned long                 m_MinimumNumberOfIterations;
  unsigned long                 m_MaximumNumberOfIterations;
  double                        m_StateOfConvergenceDecayRate;
  double                        m_Tolerance;
  bool                          m_Maximize;
  double                        m_GradientMagnitude;
  unsigned long                 m_NumberOfPerturbations;
    
  /** Parameters, as described by Spall.*/
  double                        m_Sa;
  double                        m_Sc;
  double                        m_A;
  double                        m_Alpha;
  double                        m_Gamma;
    
}; // end class SPSAOptimizer

} // end namespace itk

#endif // end #ifndef __itkSPSAOptimizer_h