This file is indexed.

/usr/include/ITK-4.5/double-conversion.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
#define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_

#include "utils.h"

namespace double_conversion {

class DoubleToStringConverter {
 public:
  // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint
  // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the
  // function returns false.
  static const int kMaxFixedDigitsBeforePoint = 60;
  static const int kMaxFixedDigitsAfterPoint = 60;

  // When calling ToExponential with a requested_digits
  // parameter > kMaxExponentialDigits then the function returns false.
  static const int kMaxExponentialDigits = 120;

  // When calling ToPrecision with a requested_digits
  // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits
  // then the function returns false.
  static const int kMinPrecisionDigits = 1;
  static const int kMaxPrecisionDigits = 120;

  enum Flags {
    NO_FLAGS = 0,
    EMIT_POSITIVE_EXPONENT_SIGN = 1,
    EMIT_TRAILING_DECIMAL_POINT = 2,
    EMIT_TRAILING_ZERO_AFTER_POINT = 4,
    UNIQUE_ZERO = 8
  };

  // Flags should be a bit-or combination of the possible Flags-enum.
  //  - NO_FLAGS: no special flags.
  //  - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent
  //    form, emits a '+' for positive exponents. Example: 1.2e+2.
  //  - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is
  //    converted into decimal format then a trailing decimal point is appended.
  //    Example: 2345.0 is converted to "2345.".
  //  - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point
  //    emits a trailing '0'-character. This flag requires the
  //    EXMIT_TRAILING_DECIMAL_POINT flag.
  //    Example: 2345.0 is converted to "2345.0".
  //  - UNIQUE_ZERO: "-0.0" is converted to "0.0".
  //
  // Infinity symbol and nan_symbol provide the string representation for these
  // special values. If the string is NULL and the special value is encountered
  // then the conversion functions return false.
  //
  // The exponent_character is used in exponential representations. It is
  // usually 'e' or 'E'.
  //
  // When converting to the shortest representation the converter will
  // represent input numbers in decimal format if they are in the interval
  // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[
  //    (lower boundary included, greater boundary excluded).
  // Example: with decimal_in_shortest_low = -6 and
  //               decimal_in_shortest_high = 21:
  //   ToShortest(0.000001)  -> "0.000001"
  //   ToShortest(0.0000001) -> "1e-7"
  //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
  //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
  //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
  //
  // When converting to precision mode the converter may add
  // max_leading_padding_zeroes before returning the number in exponential
  // format.
  // Example with max_leading_padding_zeroes_in_precision_mode = 6.
  //   ToPrecision(0.0000012345, 2) -> "0.0000012"
  //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
  // Similarily the converter may add up to
  // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
  // returning an exponential representation. A zero added by the
  // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
  // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
  //   ToPrecision(230.0, 2) -> "230"
  //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
  //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
  DoubleToStringConverter(int flags,
                          const char* infinity_symbol,
                          const char* nan_symbol,
                          char exponent_character,
                          int decimal_in_shortest_low,
                          int decimal_in_shortest_high,
                          int max_leading_padding_zeroes_in_precision_mode,
                          int max_trailing_padding_zeroes_in_precision_mode)
      : flags_(flags),
        infinity_symbol_(infinity_symbol),
        nan_symbol_(nan_symbol),
        exponent_character_(exponent_character),
        decimal_in_shortest_low_(decimal_in_shortest_low),
        decimal_in_shortest_high_(decimal_in_shortest_high),
        max_leading_padding_zeroes_in_precision_mode_(
            max_leading_padding_zeroes_in_precision_mode),
        max_trailing_padding_zeroes_in_precision_mode_(
            max_trailing_padding_zeroes_in_precision_mode) {
    // When 'trailing zero after the point' is set, then 'trailing point'
    // must be set too.
    ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) ||
        !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0));
  }

  // Returns a converter following the EcmaScript specification.
  static const DoubleToStringConverter& EcmaScriptConverter();

  // Computes the shortest string of digits that correctly represent the input
  // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high
  // (see constructor) it then either returns a decimal representation, or an
  // exponential representation.
  // Example with decimal_in_shortest_low = -6,
  //              decimal_in_shortest_high = 21,
  //              EMIT_POSITIVE_EXPONENT_SIGN activated, and
  //              EMIT_TRAILING_DECIMAL_POINT deactived:
  //   ToShortest(0.000001)  -> "0.000001"
  //   ToShortest(0.0000001) -> "1e-7"
  //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
  //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
  //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
  //
  // Note: the conversion may round the output if the returned string
  // is accurate enough to uniquely identify the input-number.
  // For example the most precise representation of the double 9e59 equals
  // "899999999999999918767229449717619953810131273674690656206848", but
  // the converter will return the shorter (but still correct) "9e59".
  //
  // Returns true if the conversion succeeds. The conversion always succeeds
  // except when the input value is special and no infinity_symbol or
  // nan_symbol has been given to the constructor.
  bool ToShortest(double value, StringBuilder* result_builder) const {
    return ToShortestIeeeNumber(value, result_builder, SHORTEST);
  }

  // Same as ToShortest, but for single-precision floats.
  bool ToShortestSingle(float value, StringBuilder* result_builder) const {
    return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE);
  }


  // Computes a decimal representation with a fixed number of digits after the
  // decimal point. The last emitted digit is rounded.
  //
  // Examples:
  //   ToFixed(3.12, 1) -> "3.1"
  //   ToFixed(3.1415, 3) -> "3.142"
  //   ToFixed(1234.56789, 4) -> "1234.5679"
  //   ToFixed(1.23, 5) -> "1.23000"
  //   ToFixed(0.1, 4) -> "0.1000"
  //   ToFixed(1e30, 2) -> "1000000000000000019884624838656.00"
  //   ToFixed(0.1, 30) -> "0.100000000000000005551115123126"
  //   ToFixed(0.1, 17) -> "0.10000000000000001"
  //
  // If requested_digits equals 0, then the tail of the result depends on
  // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT.
  // Examples, for requested_digits == 0,
  //   let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be
  //    - false and false: then 123.45 -> 123
  //                             0.678 -> 1
  //    - true and false: then 123.45 -> 123.
  //                            0.678 -> 1.
  //    - true and true: then 123.45 -> 123.0
  //                           0.678 -> 1.0
  //
  // Returns true if the conversion succeeds. The conversion always succeeds
  // except for the following cases:
  //   - the input value is special and no infinity_symbol or nan_symbol has
  //     been provided to the constructor,
  //   - 'value' > 10^kMaxFixedDigitsBeforePoint, or
  //   - 'requested_digits' > kMaxFixedDigitsAfterPoint.
  // The last two conditions imply that the result will never contain more than
  // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters
  // (one additional character for the sign, and one for the decimal point).
  bool ToFixed(double value,
               int requested_digits,
               StringBuilder* result_builder) const;

  // Computes a representation in exponential format with requested_digits
  // after the decimal point. The last emitted digit is rounded.
  // If requested_digits equals -1, then the shortest exponential representation
  // is computed.
  //
  // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and
  //               exponent_character set to 'e'.
  //   ToExponential(3.12, 1) -> "3.1e0"
  //   ToExponential(5.0, 3) -> "5.000e0"
  //   ToExponential(0.001, 2) -> "1.00e-3"
  //   ToExponential(3.1415, -1) -> "3.1415e0"
  //   ToExponential(3.1415, 4) -> "3.1415e0"
  //   ToExponential(3.1415, 3) -> "3.142e0"
  //   ToExponential(123456789000000, 3) -> "1.235e14"
  //   ToExponential(1000000000000000019884624838656.0, -1) -> "1e30"
  //   ToExponential(1000000000000000019884624838656.0, 32) ->
  //                     "1.00000000000000001988462483865600e30"
  //   ToExponential(1234, 0) -> "1e3"
  //
  // Returns true if the conversion succeeds. The conversion always succeeds
  // except for the following cases:
  //   - the input value is special and no infinity_symbol or nan_symbol has
  //     been provided to the constructor,
  //   - 'requested_digits' > kMaxExponentialDigits.
  // The last condition implies that the result will never contain more than
  // kMaxExponentialDigits + 8 characters (the sign, the digit before the
  // decimal point, the decimal point, the exponent character, the
  // exponent's sign, and at most 3 exponent digits).
  bool ToExponential(double value,
                     int requested_digits,
                     StringBuilder* result_builder) const;

  // Computes 'precision' leading digits of the given 'value' and returns them
  // either in exponential or decimal format, depending on
  // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the
  // constructor).
  // The last computed digit is rounded.
  //
  // Example with max_leading_padding_zeroes_in_precision_mode = 6.
  //   ToPrecision(0.0000012345, 2) -> "0.0000012"
  //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
  // Similarily the converter may add up to
  // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
  // returning an exponential representation. A zero added by the
  // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
  // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
  //   ToPrecision(230.0, 2) -> "230"
  //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
  //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
  // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no
  //    EMIT_TRAILING_ZERO_AFTER_POINT:
  //   ToPrecision(123450.0, 6) -> "123450"
  //   ToPrecision(123450.0, 5) -> "123450"
  //   ToPrecision(123450.0, 4) -> "123500"
  //   ToPrecision(123450.0, 3) -> "123000"
  //   ToPrecision(123450.0, 2) -> "1.2e5"
  //
  // Returns true if the conversion succeeds. The conversion always succeeds
  // except for the following cases:
  //   - the input value is special and no infinity_symbol or nan_symbol has
  //     been provided to the constructor,
  //   - precision < kMinPericisionDigits
  //   - precision > kMaxPrecisionDigits
  // The last condition implies that the result will never contain more than
  // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the
  // exponent character, the exponent's sign, and at most 3 exponent digits).
  bool ToPrecision(double value,
                   int precision,
                   StringBuilder* result_builder) const;

  enum DtoaMode {
    // Produce the shortest correct representation.
    // For example the output of 0.299999999999999988897 is (the less accurate
    // but correct) 0.3.
    SHORTEST,
    // Same as SHORTEST, but for single-precision floats.
    SHORTEST_SINGLE,
    // Produce a fixed number of digits after the decimal point.
    // For instance fixed(0.1, 4) becomes 0.1000
    // If the input number is big, the output will be big.
    FIXED,
    // Fixed number of digits (independent of the decimal point).
    PRECISION
  };

  // The maximal number of digits that are needed to emit a double in base 10.
  // A higher precision can be achieved by using more digits, but the shortest
  // accurate representation of any double will never use more digits than
  // kBase10MaximalLength.
  // Note that DoubleToAscii null-terminates its input. So the given buffer
  // should be at least kBase10MaximalLength + 1 characters long.
  static const int kBase10MaximalLength = 17;

  // Converts the given double 'v' to ascii. 'v' must not be NaN, +Infinity, or
  // -Infinity. In SHORTEST_SINGLE-mode this restriction also applies to 'v'
  // after it has been casted to a single-precision float. That is, in this
  // mode static_cast<float>(v) must not be NaN, +Infinity or -Infinity.
  //
  // The result should be interpreted as buffer * 10^(point-length).
  //
  // The output depends on the given mode:
  //  - SHORTEST: produce the least amount of digits for which the internal
  //   identity requirement is still satisfied. If the digits are printed
  //   (together with the correct exponent) then reading this number will give
  //   'v' again. The buffer will choose the representation that is closest to
  //   'v'. If there are two at the same distance, than the one farther away
  //   from 0 is chosen (halfway cases - ending with 5 - are rounded up).
  //   In this mode the 'requested_digits' parameter is ignored.
  //  - SHORTEST_SINGLE: same as SHORTEST but with single-precision.
  //  - FIXED: produces digits necessary to print a given number with
  //   'requested_digits' digits after the decimal point. The produced digits
  //   might be too short in which case the caller has to fill the remainder
  //   with '0's.
  //   Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2.
  //   Halfway cases are rounded towards +/-Infinity (away from 0). The call
  //   toFixed(0.15, 2) thus returns buffer="2", point=0.
  //   The returned buffer may contain digits that would be truncated from the
  //   shortest representation of the input.
  //  - PRECISION: produces 'requested_digits' where the first digit is not '0'.
  //   Even though the length of produced digits usually equals
  //   'requested_digits', the function is allowed to return fewer digits, in
  //   which case the caller has to fill the missing digits with '0's.
  //   Halfway cases are again rounded away from 0.
  // DoubleToAscii expects the given buffer to be big enough to hold all
  // digits and a terminating null-character. In SHORTEST-mode it expects a
  // buffer of at least kBase10MaximalLength + 1. In all other modes the
  // requested_digits parameter and the padding-zeroes limit the size of the
  // output. Don't forget the decimal point, the exponent character and the
  // terminating null-character when computing the maximal output size.
  // The given length is only used in debug mode to ensure the buffer is big
  // enough.
  static void DoubleToAscii(double v,
                            DtoaMode mode,
                            int requested_digits,
                            char* buffer,
                            int buffer_length,
                            bool* sign,
                            int* length,
                            int* point);

 private:
  // Implementation for ToShortest and ToShortestSingle.
  bool ToShortestIeeeNumber(double value,
                            StringBuilder* result_builder,
                            DtoaMode mode) const;

  // If the value is a special value (NaN or Infinity) constructs the
  // corresponding string using the configured infinity/nan-symbol.
  // If either of them is NULL or the value is not special then the
  // function returns false.
  bool HandleSpecialValues(double value, StringBuilder* result_builder) const;
  // Constructs an exponential representation (i.e. 1.234e56).
  // The given exponent assumes a decimal point after the first decimal digit.
  void CreateExponentialRepresentation(const char* decimal_digits,
                                       int length,
                                       int exponent,
                                       StringBuilder* result_builder) const;
  // Creates a decimal representation (i.e 1234.5678).
  void CreateDecimalRepresentation(const char* decimal_digits,
                                   int length,
                                   int decimal_point,
                                   int digits_after_point,
                                   StringBuilder* result_builder) const;

  const int flags_;
  const char* const infinity_symbol_;
  const char* const nan_symbol_;
  const char exponent_character_;
  const int decimal_in_shortest_low_;
  const int decimal_in_shortest_high_;
  const int max_leading_padding_zeroes_in_precision_mode_;
  const int max_trailing_padding_zeroes_in_precision_mode_;

  DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter);
};


class StringToDoubleConverter {
 public:
  // Enumeration for allowing octals and ignoring junk when converting
  // strings to numbers.
  enum Flags {
    NO_FLAGS = 0,
    ALLOW_HEX = 1,
    ALLOW_OCTALS = 2,
    ALLOW_TRAILING_JUNK = 4,
    ALLOW_LEADING_SPACES = 8,
    ALLOW_TRAILING_SPACES = 16,
    ALLOW_SPACES_AFTER_SIGN = 32
  };

  // Flags should be a bit-or combination of the possible Flags-enum.
  //  - NO_FLAGS: no special flags.
  //  - ALLOW_HEX: recognizes the prefix "0x". Hex numbers may only be integers.
  //      Ex: StringToDouble("0x1234") -> 4660.0
  //          In StringToDouble("0x1234.56") the characters ".56" are trailing
  //          junk. The result of the call is hence dependent on
  //          the ALLOW_TRAILING_JUNK flag and/or the junk value.
  //      With this flag "0x" is a junk-string. Even with ALLOW_TRAILING_JUNK,
  //      the string will not be parsed as "0" followed by junk.
  //
  //  - ALLOW_OCTALS: recognizes the prefix "0" for octals:
  //      If a sequence of octal digits starts with '0', then the number is
  //      read as octal integer. Octal numbers may only be integers.
  //      Ex: StringToDouble("01234") -> 668.0
  //          StringToDouble("012349") -> 12349.0  // Not a sequence of octal
  //                                               // digits.
  //          In StringToDouble("01234.56") the characters ".56" are trailing
  //          junk. The result of the call is hence dependent on
  //          the ALLOW_TRAILING_JUNK flag and/or the junk value.
  //          In StringToDouble("01234e56") the characters "e56" are trailing
  //          junk, too.
  //  - ALLOW_TRAILING_JUNK: ignore trailing characters that are not part of
  //      a double literal.
  //  - ALLOW_LEADING_SPACES: skip over leading spaces.
  //  - ALLOW_TRAILING_SPACES: ignore trailing spaces.
  //  - ALLOW_SPACES_AFTER_SIGN: ignore spaces after the sign.
  //       Ex: StringToDouble("-   123.2") -> -123.2.
  //           StringToDouble("+   123.2") -> 123.2
  //
  // empty_string_value is returned when an empty string is given as input.
  // If ALLOW_LEADING_SPACES or ALLOW_TRAILING_SPACES are set, then a string
  // containing only spaces is converted to the 'empty_string_value', too.
  //
  // junk_string_value is returned when
  //  a) ALLOW_TRAILING_JUNK is not set, and a junk character (a character not
  //     part of a double-literal) is found.
  //  b) ALLOW_TRAILING_JUNK is set, but the string does not start with a
  //     double literal.
  //
  // infinity_symbol and nan_symbol are strings that are used to detect
  // inputs that represent infinity and NaN. They can be null, in which case
  // they are ignored.
  // The conversion routine first reads any possible signs. Then it compares the
  // following character of the input-string with the first character of
  // the infinity, and nan-symbol. If either matches, the function assumes, that
  // a match has been found, and expects the following input characters to match
  // the remaining characters of the special-value symbol.
  // This means that the following restrictions apply to special-value symbols:
  //  - they must not start with signs ('+', or '-'),
  //  - they must not have the same first character.
  //  - they must not start with digits.
  //
  // Examples:
  //  flags = ALLOW_HEX | ALLOW_TRAILING_JUNK,
  //  empty_string_value = 0.0,
  //  junk_string_value = NaN,
  //  infinity_symbol = "infinity",
  //  nan_symbol = "nan":
  //    StringToDouble("0x1234") -> 4660.0.
  //    StringToDouble("0x1234K") -> 4660.0.
  //    StringToDouble("") -> 0.0  // empty_string_value.
  //    StringToDouble(" ") -> NaN  // junk_string_value.
  //    StringToDouble(" 1") -> NaN  // junk_string_value.
  //    StringToDouble("0x") -> NaN  // junk_string_value.
  //    StringToDouble("-123.45") -> -123.45.
  //    StringToDouble("--123.45") -> NaN  // junk_string_value.
  //    StringToDouble("123e45") -> 123e45.
  //    StringToDouble("123E45") -> 123e45.
  //    StringToDouble("123e+45") -> 123e45.
  //    StringToDouble("123E-45") -> 123e-45.
  //    StringToDouble("123e") -> 123.0  // trailing junk ignored.
  //    StringToDouble("123e-") -> 123.0  // trailing junk ignored.
  //    StringToDouble("+NaN") -> NaN  // NaN string literal.
  //    StringToDouble("-infinity") -> -inf.  // infinity literal.
  //    StringToDouble("Infinity") -> NaN  // junk_string_value.
  //
  //  flags = ALLOW_OCTAL | ALLOW_LEADING_SPACES,
  //  empty_string_value = 0.0,
  //  junk_string_value = NaN,
  //  infinity_symbol = NULL,
  //  nan_symbol = NULL:
  //    StringToDouble("0x1234") -> NaN  // junk_string_value.
  //    StringToDouble("01234") -> 668.0.
  //    StringToDouble("") -> 0.0  // empty_string_value.
  //    StringToDouble(" ") -> 0.0  // empty_string_value.
  //    StringToDouble(" 1") -> 1.0
  //    StringToDouble("0x") -> NaN  // junk_string_value.
  //    StringToDouble("0123e45") -> NaN  // junk_string_value.
  //    StringToDouble("01239E45") -> 1239e45.
  //    StringToDouble("-infinity") -> NaN  // junk_string_value.
  //    StringToDouble("NaN") -> NaN  // junk_string_value.
  StringToDoubleConverter(int flags,
                          double empty_string_value,
                          double junk_string_value,
                          const char* infinity_symbol,
                          const char* nan_symbol)
      : flags_(flags),
        empty_string_value_(empty_string_value),
        junk_string_value_(junk_string_value),
        infinity_symbol_(infinity_symbol),
        nan_symbol_(nan_symbol) {
  }

  // Performs the conversion.
  // The output parameter 'processed_characters_count' is set to the number
  // of characters that have been processed to read the number.
  // Spaces than are processed with ALLOW_{LEADING|TRAILING}_SPACES are included
  // in the 'processed_characters_count'. Trailing junk is never included.
  double StringToDouble(const char* buffer,
                        int length,
                        int* processed_characters_count) const {
    return StringToIeee(buffer, length, processed_characters_count, true);
  }

  // Same as StringToDouble but reads a float.
  // Note that this is not equivalent to static_cast<float>(StringToDouble(...))
  // due to potential double-rounding.
  float StringToFloat(const char* buffer,
                      int length,
                      int* processed_characters_count) const {
    return static_cast<float>(StringToIeee(buffer, length,
                                           processed_characters_count, false));
  }

 private:
  const int flags_;
  const double empty_string_value_;
  const double junk_string_value_;
  const char* const infinity_symbol_;
  const char* const nan_symbol_;

  double StringToIeee(const char* buffer,
                      int length,
                      int* processed_characters_count,
                      bool read_as_double) const;

  DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter);
};

}  // namespace double_conversion

#endif  // DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_