This file is indexed.

/usr/include/ITK-4.5/emulation/vcl_functional.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
#ifndef vcl_emulation_functional_h
#define vcl_emulation_functional_h
#define FUNCTION_H // why?

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 * Copyright (c) 1997
 * Moscow Center for SPARC Technology
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Moscow Center for SPARC Technology makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 */

#include <vcl_cstddef.h>
#include "vcl_bool.h"

#if 0
// fsm: these function templates are non-standard, or rather, the
// standard ones live in namespace std::rel_ops.
template <class T>
inline bool operator!=(const T& x, const T& y) { return !(x == y); }

template <class T>
inline bool operator>(const T& x, const T& y) { return y < x; }

template <class T>
inline bool operator<=(const T& x, const T& y) { return !(y < x); }

template <class T>
inline bool operator>=(const T& x, const T& y) { return !(x < y); }
#endif

template <class Arg, class Result>
struct vcl_unary_function
{
  typedef Arg argument_type;
  typedef Result result_type;
};

template <class Arg1, class Arg2, class Result>
struct vcl_binary_function
{
  typedef Arg1 first_argument_type;
  typedef Arg2 second_argument_type;
  typedef Result result_type;
};

template <class T>
struct vcl_plus : public vcl_binary_function<T, T, T>
{
  T operator()(const T& x, const T& y) const { return x + y; }
};

template <class T>
struct vcl_minus : public vcl_binary_function<T, T, T>
{
  T operator()(const T& x, const T& y) const { return x - y; }
};

template <class T>
struct vcl_multiplies : public vcl_binary_function<T, T, T>
{
  T operator()(const T& x, const T& y) const { return x * y; }
};

template <class T>
struct vcl_divides : public vcl_binary_function<T, T, T>
{
  T operator()(const T& x, const T& y) const { return x / y; }
};

template <class T>
struct vcl_modulus : public vcl_binary_function<T, T, T>
{
  T operator()(const T& x, const T& y) const { return x % y; }
};

template <class T>
struct vcl_negate : public vcl_unary_function<T, T>
{
  T operator()(const T& x) const { return -x; }
};

template <class T>
struct vcl_equal_to : public vcl_binary_function<T, T, bool>
{
  bool operator()(const T& x, const T& y) const { return x == y; }
};

template <class T>
struct vcl_not_equal_to : public vcl_binary_function<T, T, bool>
{
  bool operator()(const T& x, const T& y) const { return x != y; }
};

template <class T>
struct vcl_greater : public vcl_binary_function<T, T, bool>
{
  bool operator()(const T& x, const T& y) const { return x > y; }
};

template <class T>
struct vcl_less : public vcl_binary_function<T, T, bool>
{
  bool operator()(const T& x, const T& y) const { return x < y; }
};

template <class T>
struct vcl_greater_equal : public vcl_binary_function<T, T, bool>
{
  bool operator()(const T& x, const T& y) const { return x >= y; }
};

template <class T>
struct vcl_less_equal : public vcl_binary_function<T, T, bool>
{
  bool operator()(const T& x, const T& y) const { return x <= y; }
};

template <class T>
struct vcl_logical_and : public vcl_binary_function<T, T, bool>
{
  bool operator()(const T& x, const T& y) const { return x && y; }
};

template <class T>
struct vcl_logical_or : public vcl_binary_function<T, T, bool>
{
  bool operator()(const T& x, const T& y) const { return x || y; }
};

template <class T>
struct vcl_logical_not : public vcl_unary_function<T, bool>
{
  bool operator()(const T& x) const { return !x; }
};

#  if defined (__STL_BASE_TYPEDEF_BUG)
// this workaround is needed for SunPro 4.0.1
// suggested by "Martin Abernethy" <gma@paston.co.uk>:

// We have to introduce the XXary_predicate_aux structures in order to
// access the argument and return types of predicate functions supplied
// as type parameters. SUN C++ 4.0.1 compiler gives errors for template type parameters
// of the form 'name1::name2', where name1 is itself a type parameter.

template <class Operation>
struct vcl__unary_fun_aux : private Operation
{
        typedef typename Operation::argument_type argument_type;
        typedef typename Operation::result_type result_type;
};

template <class Operation>
struct vcl__binary_fun_aux : private Operation
{
        typedef typename Operation::first_argument_type first_argument_type;
        typedef typename Operation::second_argument_type second_argument_type;
        typedef typename Operation::result_type result_type;
};

#  define __UNARY_ARG(Operation,type)  vcl__unary_fun_aux<Operation>::type
#  define __BINARY_ARG(Operation,type)  vcl__binary_fun_aux<Operation>::type
# else
#  define __UNARY_ARG(Operation,type)  Operation::type
#  define __BINARY_ARG(Operation,type) Operation::type
# endif

template <class Predicate>
class vcl_unary_negate : public vcl_unary_function<typename __UNARY_ARG(Predicate,argument_type), bool>
{
 protected:
  Predicate pred;
 public:
  explicit vcl_unary_negate(const Predicate& x) : pred(x) {}
  bool operator()(const argument_type& x) const { return !pred(x); }
};

template <class Predicate>
inline vcl_unary_negate<Predicate> not1(const Predicate& pred)
{
  return vcl_unary_negate<Predicate>(pred);
}

template <class Predicate>
class vcl_binary_negate
    : public vcl_binary_function<typename __BINARY_ARG(Predicate,first_argument_type),
                                 typename __BINARY_ARG(Predicate,second_argument_type),
                                 bool>
{
 protected:
  Predicate pred;
 public:
  explicit vcl_binary_negate(const Predicate& x) : pred(x) {}
  bool operator()(const first_argument_type& x,
                  const second_argument_type& y) const { return !pred(x, y); }
};

template <class Predicate>
inline vcl_binary_negate<Predicate> not2(const Predicate& pred)
{
  return vcl_binary_negate<Predicate>(pred);
}

template <class Operation>
class vcl_binder1st :
    public vcl_unary_function<typename __BINARY_ARG(Operation,second_argument_type),
                          typename __BINARY_ARG(Operation,result_type) >
{
 protected:
  Operation op;
  typename __BINARY_ARG(Operation,first_argument_type) value;
 public:
  vcl_binder1st(const Operation& x,
                const typename __BINARY_ARG(Operation,first_argument_type)& y)
      : op(x), value(y) {}
  typename result_type operator()(const argument_type& x) const { return op(value, x); }
};

template <class Operation, class T>
vcl_binder1st<Operation> bind1st(const Operation& op, const T& x)
{
  typedef typename __BINARY_ARG(Operation,first_argument_type) arg_type;
  return vcl_binder1st<Operation>(op, arg_type(x));
}

template <class Operation>
class vcl_binder2nd :
    public vcl_unary_function<typename __BINARY_ARG(Operation,first_argument_type),
                              typename __BINARY_ARG(Operation,result_type)>
{
 protected:
  Operation op;
  typename __BINARY_ARG(Operation,second_argument_type) value;
 public:
  vcl_binder2nd(const Operation& x,
                const typename __BINARY_ARG(Operation,second_argument_type)& y)
      : op(x), value(y) {}
  typename result_type operator()(const argument_type& x) const { return op(x, value); }
};

template <class Operation, class T>
vcl_binder2nd<Operation> bind2nd(const Operation& op, const T& x)
{
  typedef typename __BINARY_ARG(Operation,second_argument_type) arg_type;
  return vcl_binder2nd<Operation>(op, arg_type(x));
}

template <class Operation1, class Operation2>
class vcl_unary_compose :
    public vcl_unary_function<typename __UNARY_ARG(Operation2,argument_type),
                              typename __UNARY_ARG(Operation1,result_type)>
{
 protected:
  Operation1 op1;
  Operation2 op2;
 public:
  vcl_unary_compose(const Operation1& x, const Operation2& y) : op1(x), op2(y) {}
  typename __UNARY_ARG(Operation1,result_type)
  operator()(const typename __UNARY_ARG(Operation2,argument_type)& x) const { return op1(op2(x)); }
};

template <class Operation1, class Operation2>
inline vcl_unary_compose<Operation1, Operation2> compose1(const Operation1& op1,
                                                          const Operation2& op2)
{
  return vcl_unary_compose<Operation1, Operation2>(op1, op2);
}

template <class Operation1, class Operation2, class Operation3>
class vcl_binary_compose :
    public vcl_unary_function<typename __UNARY_ARG(Operation2,argument_type),
                              typename __BINARY_ARG(Operation1,result_type)>
{
 protected:
  Operation1 op1;
  Operation2 op2;
  Operation3 op3;
 public:
  vcl_binary_compose(const Operation1& x, const Operation2& y,
                     const Operation3& z) : op1(x), op2(y), op3(z) { }
  typename __BINARY_ARG(Operation1,result_type)
  operator()(const typename __UNARY_ARG(Operation2,argument_type)& x) const { return op1(op2(x), op3(x)); }
};

template <class Operation1, class Operation2, class Operation3>
inline vcl_binary_compose<Operation1, Operation2, Operation3>
compose2(const Operation1& op1, const Operation2& op2, const Operation3& op3)
{
  return vcl_binary_compose<Operation1, Operation2, Operation3>(op1, op2, op3);
}

template <class Arg, class Result>
class vcl_pointer_to_unary_function : public vcl_unary_function<Arg, Result>
{
 protected:
  Result (*ptr)(Arg);
 public:
  vcl_pointer_to_unary_function() {}
  explicit vcl_pointer_to_unary_function(Result (*x)(Arg)) : ptr(x) {}
  Result operator()(Arg x) const { return ptr(x); }
};

template <class Arg, class Result>
inline vcl_pointer_to_unary_function<Arg, Result> ptr_fun(Result (*x)(Arg))
{
  return vcl_pointer_to_unary_function<Arg, Result>(x);
}

template <class Arg1, class Arg2, class Result>
class vcl_pointer_to_binary_function : public vcl_binary_function<Arg1, Arg2, Result>
{
 protected:
  Result (*ptr)(Arg1, Arg2);
 public:
  vcl_pointer_to_binary_function() {}
  explicit vcl_pointer_to_binary_function(Result (*x)(Arg1, Arg2)) : ptr(x) {}
  Result operator()(Arg1 x, Arg2 y) const { return ptr(x, y); }
};

template <class Arg1, class Arg2, class Result>
inline vcl_pointer_to_binary_function<Arg1, Arg2, Result>
ptr_fun(Result (*x)(Arg1, Arg2))
{
    return vcl_pointer_to_binary_function<Arg1, Arg2, Result>(x);
}

template <class T>
struct vcl_identity : public vcl_unary_function<T, T>
{
 public:
  const T& operator()(const T& x) const { return x; }
};

template <class Pair>
struct vcl_select1st : public vcl_unary_function<Pair, typename Pair::first_type>
{
  const typename Pair::first_type& operator()(const Pair& x) const { return x.first; }
};

template <class Pair>
struct vcl_select2nd : public vcl_unary_function<Pair, typename Pair::second_type>
{
  const typename Pair::second_type& operator()(const Pair& x) const { return x.second; }
};

template <class Arg1, class Arg2>
struct vcl_project1st : public vcl_binary_function<Arg1, Arg2, Arg1>
{
  Arg1 operator()(const Arg1& x, const Arg2&) const { return x; }
};

template <class Arg1, class Arg2>
struct vcl_project2nd : public vcl_binary_function<Arg1, Arg2, Arg2>
{
  Arg2 operator()(const Arg1&, const Arg2& y) const { return y; }
};

//  SGI extension (constant functions)

template <class Result>
struct vcl_constant_void_fun
{
  typedef Result result_type;
  result_type val;
  vcl_constant_void_fun(const result_type& v) : val(v) {}
  const result_type& operator()() const { return val; }
};

template <class Result, VCL_DFL_TMPL_PARAM_STLDECL(Argument, Result) >
struct vcl_constant_unary_fun : public vcl_unary_function<Argument, Result>
{
# if defined (__STL_BASE_TYPEDEF_BUG)
  typedef vcl_unary_function<Argument, Result> super;
  typedef typename super::result_type result_type;
  typedef typename super::argument_type argument_type;
#  endif
  result_type val;
  vcl_constant_unary_fun(const result_type& v) : val(v) {}
  const result_type& operator()(const argument_type&) const { return val; }
};

template <class Result, VCL_DFL_TMPL_PARAM_STLDECL(Arg1,Result), VCL_DFL_TMPL_PARAM_STLDECL(Arg2,Arg1) >
struct vcl_constant_binary_fun : public vcl_binary_function<Arg1, Arg2, Result>
{
# if defined (__STL_BASE_TYPEDEF_BUG)
  typedef vcl_binary_function<Arg1, Arg2, Result> super;
  typedef typename super::result_type result_type;
  typedef typename super::first_argument_type first_argument_type;
  typedef typename super::second_argument_type second_argument_type;
#  endif
  result_type val;
  vcl_constant_binary_fun(const result_type& v) : val(v) {}
  const result_type& operator()(const first_argument_type&,
                                const second_argument_type&) const { return val; }
};

template <class Result>
inline vcl_constant_void_fun<Result> constant0(const Result& val)
{
  return vcl_constant_void_fun<Result>(val);
}

template <class Result>
inline vcl_constant_unary_fun<Result VCL_DFL_TMPL_ARG(Result) > constant1(const Result& val)
{
  return vcl_constant_unary_fun<Result, Result>(val);
}

template <class Result>
inline vcl_constant_binary_fun<Result
  VCL_DFL_TMPL_ARG(Result) VCL_DFL_TMPL_ARG(Result) > constant2(const Result& val)
{
  return vcl_constant_binary_fun<Result VCL_DFL_TMPL_ARG(Result) VCL_DFL_TMPL_ARG(Result)  >(val);
}

//  SGI extension (subtractive range)

// Note: this code assumes that T is 32-bit unsigned integer.
template < class T >
class vcl__subtractive_rng_t : public vcl_unary_function<T, T>
{
 private:
  T table[55];
  vcl_size_t index1;
  vcl_size_t index2;
 public:
  vcl__subtractive_rng_t(T seed) { initialize(seed); }
  vcl__subtractive_rng_t() { initialize(161803398u); }

  T operator()(T limit)
  {
    index1 = (index1 + 1) % 55;
    index2 = (index2 + 1) % 55;
    table[index1] = table[index1] - table[index2];
    return table[index1] % limit;
  }
  inline void initialize(T seed);
};

template <class T>
void vcl__subtractive_rng_t<T>::initialize(T seed)
{
  T k = 1;
  table[54] = seed;
  vcl_size_t i;
  for (i = 0; i < 54; i++)
  {
    vcl_size_t ii = (21 * (i + 1) % 55) - 1;
    table[ii] = k;
    k = seed - k;
    seed = table[ii];
  }
  for (int loop = 0; loop < 4; loop++)
    for (i = 0; i < 55; i++)
      table[i] = table[i] - table[(1 + i + 30) % 55];
  index1 = 0;
  index2 = 31;
}

typedef vcl__subtractive_rng_t<__STL_UINT32_T> vcl_subtractive_rng;


// 20.3.8  Adaptors for pointers to members [lib.member.pointer.adaptors]

// vcl_mem_fun_t calls the member vcl_function it is  initialized  with  given  a
// pointer argument.
template <class Class, class Result>
class vcl_mem_fun_t : public vcl_unary_function<Class*, Result>
{
 protected:
  typedef Result (Class::*fun_type)(void);
  fun_type ptr;
 public:
  vcl_mem_fun_t() {}
  explicit vcl_mem_fun_t(fun_type p) : ptr(p) {}
  Result operator()(Class* x) const { return (x->*ptr)();}
};

//   vcl_mem_fun1_t  calls  the  member vcl_function it is initialized with given a
//   pointer argument and an additional argument of the appropriate type.
template <class Class, class Arg, class Result>
class vcl_mem_fun1_t: public vcl_binary_function<Class*, Arg, Result>
{
 protected:
  typedef Result (Class::*fun_type)(Arg);
  fun_type ptr;
 public:
  vcl_mem_fun1_t() {}
  explicit vcl_mem_fun1_t(fun_type p) : ptr(p) {}
  Result operator()(Class* x, Arg a) const { return (x->*ptr)(a);}
};

// vcl_mem_fun_ref_t calls the member vcl_function it is initialized with given a
// reference argument.
template <class Class, class Result>
class vcl_mem_fun_ref_t : public vcl_unary_function<Class, Result>
{
 protected:
  typedef Result (Class::*fun_type)(void);
  fun_type ptr;
 public:
  vcl_mem_fun_ref_t() {}
  explicit vcl_mem_fun_ref_t(fun_type p) : ptr(p) {}
  Result operator()(Class& x) const { return (x.*ptr)();}
};

// vcl_mem_fun1_ref_t  calls the member vcl_function it is initialized with given
// a reference argument and an additional  argument  of  the  appropriate
// type.
template <class Class, class Arg, class Result>
class vcl_mem_fun1_ref_t: public vcl_binary_function<Class, Arg, Result>
{
 protected:
  typedef Result (Class::*fun_type)(Arg);
  fun_type ptr;
 public:
  vcl_mem_fun1_ref_t() {}
  explicit vcl_mem_fun1_ref_t(fun_type p) : ptr(p) {}
  Result operator()(Class& x, Arg a) const { return (x.*ptr)(a);}
};

# if !defined (__STL_MEMBER_POINTER_PARAM_BUG)
//  mem_fun(&X::f) returns an object through  which  X::f  can  be  called
//  given  a  pointer  to an X followed by the argument required for f (if
//  any).
template <class Class, class Result>
inline vcl_mem_fun_t <Class, Result>
mem_fun(Result (Class::*ptr)(void))
{
  return vcl_mem_fun_t<Class, Result>(ptr);
}

template <class Class, class Arg, class Result>
inline vcl_mem_fun1_t <Class, Arg, Result>
mem_fun1(Result (Class::*ptr)(Arg))
{
  return vcl_mem_fun1_t<Class, Arg, Result>(ptr);
}

//  mem_fun_ref(&X::f)  returns an object through which X::f can be called
//  given a reference to an X followed by the argument required for f  (if
//  any).
template <class Class, class Result>
inline vcl_mem_fun_ref_t<Class, Result>
mem_fun_ref(Result (Class::*ptr)(void))
{
  return vcl_mem_fun_ref_t<Class, Result>(ptr);
}

template <class Class, class Arg, class Result>
inline vcl_mem_fun1_ref_t<Class, Arg, Result>
mem_fun1_ref(Result (Class::*ptr)(Arg))
{
  return vcl_mem_fun1_ref_t<Class, Arg, Result>(ptr);
}

# endif

#endif // vcl_emulation_functional_h