/usr/include/ITK-4.5/emulation/vcl_functional.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 | #ifndef vcl_emulation_functional_h
#define vcl_emulation_functional_h
#define FUNCTION_H // why?
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
* Copyright (c) 1997
* Moscow Center for SPARC Technology
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Moscow Center for SPARC Technology makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
#include <vcl_cstddef.h>
#include "vcl_bool.h"
#if 0
// fsm: these function templates are non-standard, or rather, the
// standard ones live in namespace std::rel_ops.
template <class T>
inline bool operator!=(const T& x, const T& y) { return !(x == y); }
template <class T>
inline bool operator>(const T& x, const T& y) { return y < x; }
template <class T>
inline bool operator<=(const T& x, const T& y) { return !(y < x); }
template <class T>
inline bool operator>=(const T& x, const T& y) { return !(x < y); }
#endif
template <class Arg, class Result>
struct vcl_unary_function
{
typedef Arg argument_type;
typedef Result result_type;
};
template <class Arg1, class Arg2, class Result>
struct vcl_binary_function
{
typedef Arg1 first_argument_type;
typedef Arg2 second_argument_type;
typedef Result result_type;
};
template <class T>
struct vcl_plus : public vcl_binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const { return x + y; }
};
template <class T>
struct vcl_minus : public vcl_binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const { return x - y; }
};
template <class T>
struct vcl_multiplies : public vcl_binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const { return x * y; }
};
template <class T>
struct vcl_divides : public vcl_binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const { return x / y; }
};
template <class T>
struct vcl_modulus : public vcl_binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const { return x % y; }
};
template <class T>
struct vcl_negate : public vcl_unary_function<T, T>
{
T operator()(const T& x) const { return -x; }
};
template <class T>
struct vcl_equal_to : public vcl_binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const { return x == y; }
};
template <class T>
struct vcl_not_equal_to : public vcl_binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const { return x != y; }
};
template <class T>
struct vcl_greater : public vcl_binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const { return x > y; }
};
template <class T>
struct vcl_less : public vcl_binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const { return x < y; }
};
template <class T>
struct vcl_greater_equal : public vcl_binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const { return x >= y; }
};
template <class T>
struct vcl_less_equal : public vcl_binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const { return x <= y; }
};
template <class T>
struct vcl_logical_and : public vcl_binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const { return x && y; }
};
template <class T>
struct vcl_logical_or : public vcl_binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const { return x || y; }
};
template <class T>
struct vcl_logical_not : public vcl_unary_function<T, bool>
{
bool operator()(const T& x) const { return !x; }
};
# if defined (__STL_BASE_TYPEDEF_BUG)
// this workaround is needed for SunPro 4.0.1
// suggested by "Martin Abernethy" <gma@paston.co.uk>:
// We have to introduce the XXary_predicate_aux structures in order to
// access the argument and return types of predicate functions supplied
// as type parameters. SUN C++ 4.0.1 compiler gives errors for template type parameters
// of the form 'name1::name2', where name1 is itself a type parameter.
template <class Operation>
struct vcl__unary_fun_aux : private Operation
{
typedef typename Operation::argument_type argument_type;
typedef typename Operation::result_type result_type;
};
template <class Operation>
struct vcl__binary_fun_aux : private Operation
{
typedef typename Operation::first_argument_type first_argument_type;
typedef typename Operation::second_argument_type second_argument_type;
typedef typename Operation::result_type result_type;
};
# define __UNARY_ARG(Operation,type) vcl__unary_fun_aux<Operation>::type
# define __BINARY_ARG(Operation,type) vcl__binary_fun_aux<Operation>::type
# else
# define __UNARY_ARG(Operation,type) Operation::type
# define __BINARY_ARG(Operation,type) Operation::type
# endif
template <class Predicate>
class vcl_unary_negate : public vcl_unary_function<typename __UNARY_ARG(Predicate,argument_type), bool>
{
protected:
Predicate pred;
public:
explicit vcl_unary_negate(const Predicate& x) : pred(x) {}
bool operator()(const argument_type& x) const { return !pred(x); }
};
template <class Predicate>
inline vcl_unary_negate<Predicate> not1(const Predicate& pred)
{
return vcl_unary_negate<Predicate>(pred);
}
template <class Predicate>
class vcl_binary_negate
: public vcl_binary_function<typename __BINARY_ARG(Predicate,first_argument_type),
typename __BINARY_ARG(Predicate,second_argument_type),
bool>
{
protected:
Predicate pred;
public:
explicit vcl_binary_negate(const Predicate& x) : pred(x) {}
bool operator()(const first_argument_type& x,
const second_argument_type& y) const { return !pred(x, y); }
};
template <class Predicate>
inline vcl_binary_negate<Predicate> not2(const Predicate& pred)
{
return vcl_binary_negate<Predicate>(pred);
}
template <class Operation>
class vcl_binder1st :
public vcl_unary_function<typename __BINARY_ARG(Operation,second_argument_type),
typename __BINARY_ARG(Operation,result_type) >
{
protected:
Operation op;
typename __BINARY_ARG(Operation,first_argument_type) value;
public:
vcl_binder1st(const Operation& x,
const typename __BINARY_ARG(Operation,first_argument_type)& y)
: op(x), value(y) {}
typename result_type operator()(const argument_type& x) const { return op(value, x); }
};
template <class Operation, class T>
vcl_binder1st<Operation> bind1st(const Operation& op, const T& x)
{
typedef typename __BINARY_ARG(Operation,first_argument_type) arg_type;
return vcl_binder1st<Operation>(op, arg_type(x));
}
template <class Operation>
class vcl_binder2nd :
public vcl_unary_function<typename __BINARY_ARG(Operation,first_argument_type),
typename __BINARY_ARG(Operation,result_type)>
{
protected:
Operation op;
typename __BINARY_ARG(Operation,second_argument_type) value;
public:
vcl_binder2nd(const Operation& x,
const typename __BINARY_ARG(Operation,second_argument_type)& y)
: op(x), value(y) {}
typename result_type operator()(const argument_type& x) const { return op(x, value); }
};
template <class Operation, class T>
vcl_binder2nd<Operation> bind2nd(const Operation& op, const T& x)
{
typedef typename __BINARY_ARG(Operation,second_argument_type) arg_type;
return vcl_binder2nd<Operation>(op, arg_type(x));
}
template <class Operation1, class Operation2>
class vcl_unary_compose :
public vcl_unary_function<typename __UNARY_ARG(Operation2,argument_type),
typename __UNARY_ARG(Operation1,result_type)>
{
protected:
Operation1 op1;
Operation2 op2;
public:
vcl_unary_compose(const Operation1& x, const Operation2& y) : op1(x), op2(y) {}
typename __UNARY_ARG(Operation1,result_type)
operator()(const typename __UNARY_ARG(Operation2,argument_type)& x) const { return op1(op2(x)); }
};
template <class Operation1, class Operation2>
inline vcl_unary_compose<Operation1, Operation2> compose1(const Operation1& op1,
const Operation2& op2)
{
return vcl_unary_compose<Operation1, Operation2>(op1, op2);
}
template <class Operation1, class Operation2, class Operation3>
class vcl_binary_compose :
public vcl_unary_function<typename __UNARY_ARG(Operation2,argument_type),
typename __BINARY_ARG(Operation1,result_type)>
{
protected:
Operation1 op1;
Operation2 op2;
Operation3 op3;
public:
vcl_binary_compose(const Operation1& x, const Operation2& y,
const Operation3& z) : op1(x), op2(y), op3(z) { }
typename __BINARY_ARG(Operation1,result_type)
operator()(const typename __UNARY_ARG(Operation2,argument_type)& x) const { return op1(op2(x), op3(x)); }
};
template <class Operation1, class Operation2, class Operation3>
inline vcl_binary_compose<Operation1, Operation2, Operation3>
compose2(const Operation1& op1, const Operation2& op2, const Operation3& op3)
{
return vcl_binary_compose<Operation1, Operation2, Operation3>(op1, op2, op3);
}
template <class Arg, class Result>
class vcl_pointer_to_unary_function : public vcl_unary_function<Arg, Result>
{
protected:
Result (*ptr)(Arg);
public:
vcl_pointer_to_unary_function() {}
explicit vcl_pointer_to_unary_function(Result (*x)(Arg)) : ptr(x) {}
Result operator()(Arg x) const { return ptr(x); }
};
template <class Arg, class Result>
inline vcl_pointer_to_unary_function<Arg, Result> ptr_fun(Result (*x)(Arg))
{
return vcl_pointer_to_unary_function<Arg, Result>(x);
}
template <class Arg1, class Arg2, class Result>
class vcl_pointer_to_binary_function : public vcl_binary_function<Arg1, Arg2, Result>
{
protected:
Result (*ptr)(Arg1, Arg2);
public:
vcl_pointer_to_binary_function() {}
explicit vcl_pointer_to_binary_function(Result (*x)(Arg1, Arg2)) : ptr(x) {}
Result operator()(Arg1 x, Arg2 y) const { return ptr(x, y); }
};
template <class Arg1, class Arg2, class Result>
inline vcl_pointer_to_binary_function<Arg1, Arg2, Result>
ptr_fun(Result (*x)(Arg1, Arg2))
{
return vcl_pointer_to_binary_function<Arg1, Arg2, Result>(x);
}
template <class T>
struct vcl_identity : public vcl_unary_function<T, T>
{
public:
const T& operator()(const T& x) const { return x; }
};
template <class Pair>
struct vcl_select1st : public vcl_unary_function<Pair, typename Pair::first_type>
{
const typename Pair::first_type& operator()(const Pair& x) const { return x.first; }
};
template <class Pair>
struct vcl_select2nd : public vcl_unary_function<Pair, typename Pair::second_type>
{
const typename Pair::second_type& operator()(const Pair& x) const { return x.second; }
};
template <class Arg1, class Arg2>
struct vcl_project1st : public vcl_binary_function<Arg1, Arg2, Arg1>
{
Arg1 operator()(const Arg1& x, const Arg2&) const { return x; }
};
template <class Arg1, class Arg2>
struct vcl_project2nd : public vcl_binary_function<Arg1, Arg2, Arg2>
{
Arg2 operator()(const Arg1&, const Arg2& y) const { return y; }
};
// SGI extension (constant functions)
template <class Result>
struct vcl_constant_void_fun
{
typedef Result result_type;
result_type val;
vcl_constant_void_fun(const result_type& v) : val(v) {}
const result_type& operator()() const { return val; }
};
template <class Result, VCL_DFL_TMPL_PARAM_STLDECL(Argument, Result) >
struct vcl_constant_unary_fun : public vcl_unary_function<Argument, Result>
{
# if defined (__STL_BASE_TYPEDEF_BUG)
typedef vcl_unary_function<Argument, Result> super;
typedef typename super::result_type result_type;
typedef typename super::argument_type argument_type;
# endif
result_type val;
vcl_constant_unary_fun(const result_type& v) : val(v) {}
const result_type& operator()(const argument_type&) const { return val; }
};
template <class Result, VCL_DFL_TMPL_PARAM_STLDECL(Arg1,Result), VCL_DFL_TMPL_PARAM_STLDECL(Arg2,Arg1) >
struct vcl_constant_binary_fun : public vcl_binary_function<Arg1, Arg2, Result>
{
# if defined (__STL_BASE_TYPEDEF_BUG)
typedef vcl_binary_function<Arg1, Arg2, Result> super;
typedef typename super::result_type result_type;
typedef typename super::first_argument_type first_argument_type;
typedef typename super::second_argument_type second_argument_type;
# endif
result_type val;
vcl_constant_binary_fun(const result_type& v) : val(v) {}
const result_type& operator()(const first_argument_type&,
const second_argument_type&) const { return val; }
};
template <class Result>
inline vcl_constant_void_fun<Result> constant0(const Result& val)
{
return vcl_constant_void_fun<Result>(val);
}
template <class Result>
inline vcl_constant_unary_fun<Result VCL_DFL_TMPL_ARG(Result) > constant1(const Result& val)
{
return vcl_constant_unary_fun<Result, Result>(val);
}
template <class Result>
inline vcl_constant_binary_fun<Result
VCL_DFL_TMPL_ARG(Result) VCL_DFL_TMPL_ARG(Result) > constant2(const Result& val)
{
return vcl_constant_binary_fun<Result VCL_DFL_TMPL_ARG(Result) VCL_DFL_TMPL_ARG(Result) >(val);
}
// SGI extension (subtractive range)
// Note: this code assumes that T is 32-bit unsigned integer.
template < class T >
class vcl__subtractive_rng_t : public vcl_unary_function<T, T>
{
private:
T table[55];
vcl_size_t index1;
vcl_size_t index2;
public:
vcl__subtractive_rng_t(T seed) { initialize(seed); }
vcl__subtractive_rng_t() { initialize(161803398u); }
T operator()(T limit)
{
index1 = (index1 + 1) % 55;
index2 = (index2 + 1) % 55;
table[index1] = table[index1] - table[index2];
return table[index1] % limit;
}
inline void initialize(T seed);
};
template <class T>
void vcl__subtractive_rng_t<T>::initialize(T seed)
{
T k = 1;
table[54] = seed;
vcl_size_t i;
for (i = 0; i < 54; i++)
{
vcl_size_t ii = (21 * (i + 1) % 55) - 1;
table[ii] = k;
k = seed - k;
seed = table[ii];
}
for (int loop = 0; loop < 4; loop++)
for (i = 0; i < 55; i++)
table[i] = table[i] - table[(1 + i + 30) % 55];
index1 = 0;
index2 = 31;
}
typedef vcl__subtractive_rng_t<__STL_UINT32_T> vcl_subtractive_rng;
// 20.3.8 Adaptors for pointers to members [lib.member.pointer.adaptors]
// vcl_mem_fun_t calls the member vcl_function it is initialized with given a
// pointer argument.
template <class Class, class Result>
class vcl_mem_fun_t : public vcl_unary_function<Class*, Result>
{
protected:
typedef Result (Class::*fun_type)(void);
fun_type ptr;
public:
vcl_mem_fun_t() {}
explicit vcl_mem_fun_t(fun_type p) : ptr(p) {}
Result operator()(Class* x) const { return (x->*ptr)();}
};
// vcl_mem_fun1_t calls the member vcl_function it is initialized with given a
// pointer argument and an additional argument of the appropriate type.
template <class Class, class Arg, class Result>
class vcl_mem_fun1_t: public vcl_binary_function<Class*, Arg, Result>
{
protected:
typedef Result (Class::*fun_type)(Arg);
fun_type ptr;
public:
vcl_mem_fun1_t() {}
explicit vcl_mem_fun1_t(fun_type p) : ptr(p) {}
Result operator()(Class* x, Arg a) const { return (x->*ptr)(a);}
};
// vcl_mem_fun_ref_t calls the member vcl_function it is initialized with given a
// reference argument.
template <class Class, class Result>
class vcl_mem_fun_ref_t : public vcl_unary_function<Class, Result>
{
protected:
typedef Result (Class::*fun_type)(void);
fun_type ptr;
public:
vcl_mem_fun_ref_t() {}
explicit vcl_mem_fun_ref_t(fun_type p) : ptr(p) {}
Result operator()(Class& x) const { return (x.*ptr)();}
};
// vcl_mem_fun1_ref_t calls the member vcl_function it is initialized with given
// a reference argument and an additional argument of the appropriate
// type.
template <class Class, class Arg, class Result>
class vcl_mem_fun1_ref_t: public vcl_binary_function<Class, Arg, Result>
{
protected:
typedef Result (Class::*fun_type)(Arg);
fun_type ptr;
public:
vcl_mem_fun1_ref_t() {}
explicit vcl_mem_fun1_ref_t(fun_type p) : ptr(p) {}
Result operator()(Class& x, Arg a) const { return (x.*ptr)(a);}
};
# if !defined (__STL_MEMBER_POINTER_PARAM_BUG)
// mem_fun(&X::f) returns an object through which X::f can be called
// given a pointer to an X followed by the argument required for f (if
// any).
template <class Class, class Result>
inline vcl_mem_fun_t <Class, Result>
mem_fun(Result (Class::*ptr)(void))
{
return vcl_mem_fun_t<Class, Result>(ptr);
}
template <class Class, class Arg, class Result>
inline vcl_mem_fun1_t <Class, Arg, Result>
mem_fun1(Result (Class::*ptr)(Arg))
{
return vcl_mem_fun1_t<Class, Arg, Result>(ptr);
}
// mem_fun_ref(&X::f) returns an object through which X::f can be called
// given a reference to an X followed by the argument required for f (if
// any).
template <class Class, class Result>
inline vcl_mem_fun_ref_t<Class, Result>
mem_fun_ref(Result (Class::*ptr)(void))
{
return vcl_mem_fun_ref_t<Class, Result>(ptr);
}
template <class Class, class Arg, class Result>
inline vcl_mem_fun1_ref_t<Class, Arg, Result>
mem_fun1_ref(Result (Class::*ptr)(Arg))
{
return vcl_mem_fun1_ref_t<Class, Arg, Result>(ptr);
}
# endif
#endif // vcl_emulation_functional_h
|