This file is indexed.

/usr/include/ITK-4.5/emulation/vcl_limits.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
// This is vcl/emulation/vcl_limits.h
#ifndef emulation_vcl_limits_h_
#define emulation_vcl_limits_h_
#ifdef VCL_NEEDS_PRAGMA_INTERFACE
#pragma interface
#endif
//:
// \file
// \brief Standard limits for numeric datatypes
//
//  Implementation of the May 96 ANSI Draft Working Paper (DWP)
//  numeric_limits class.  Numbering in
//  the documentation below refers to section 18.2 of the DWP.
//
// \author Andrew W. Fitzgibbon, Oxford RRG
// \date   28 Aug 96
//
// \verbatim
//  Modifications
//   LSB (Manchester) 23/3/01 Documentation tidied
//   Feb.2002 - Peter Vanroose - brief doxygen comment placed on single line
//   Jan.2003 - Peter Vanroose - bug fix in infinity() and NaN(): LITTLE_ENDIAN
// \endverbatim
//
//-----------------------------------------------------------------------------

#include <vcl_compiler.h>

//: 18.2.1.3  Type float_round_style                     [lib.round.style]

enum vcl_float_round_style {
  vcl_round_indeterminate       = -1,
  vcl_round_toward_zero         =  0,
  vcl_round_to_nearest          =  1,
  vcl_round_toward_infinity     =  2,
  vcl_round_toward_neg_infinity =  3
};

#ifdef infinity
# error
#endif

//: Standard limits for numeric datatypes
// Implementation of the May 96 ANSI Draft Working Paper (DWP)
// numeric_limits class.  Numbering in
// the documentation below refers to section 18.2 of the DWP.
//
// When specializing this class, note that 9.4.2 in the '98 C++
// standard requires that the static constants be defined
// somewhere. (See vcl_numeric_limits.cxx)
//
template<class T>
class vcl_numeric_limits
{
 public:

  //: Distinguishes between scalar types, which have specialisations, and non-scalar types, which don't.
  static const bool is_specialized;

  //: Minimum finite value.
  //  Equivalent to CHAR_MIN, SHRT_MIN, FLT_MIN, DBL_MIN, etc.
  //
  //  For  floating types with denormalization, returns the minimum positive
  //   normalized value, denorm_min().
  //
  //  Meaningful for all specializations in which  is_bounded  ==  true,  or
  //   is_bounded == false && is_signed == false.
  static T min();

  //: Maximum finite value.
  //  Equivalent to CHAR_MAX, SHRT_MAX, FLT_MAX, DBL_MAX, etc.
  //  Meaningful for all specializations in which is_bounded == true.
  static T max();

  //: Number of radix digits which can be represented without change.
  //  For built-in integer types, the number of non-sign bits in the representation.
  //  For floating point types, the number of radix digits in the mantissa.
  //  Equivalent to FLT_MANT_DIG, DBL_MANT_DIG, LDBL_MANT_DIG.
  static const int  digits;

  //: Number of base 10 digits which can be represented without change.
  //  Equivalent to FLT_DIG, DBL_DIG, LDBL_DIG.
  //  Meaningful for all specializations in which is_bounded == true.
  static const int  digits10;

  //: True if the type is signed.
  static const bool is_signed;

  //: True if the type is integer
  static const bool is_integer;

  //: True if the type uses an exact representation.
  //  All integer types are exact, but not vice versa.
  //  For example, rational and fixed-exponent
  //  representations are exact but not integer.
  static const bool is_exact;

  //:
  //  For floating types, specifies the base or radix of the exponent
  //    representation (often 2).  Equivalent to FLT_RADIX.
  //  For integer types, specifies the base of the representation -
  //    distinguishes types with bases other than 2 (e.g. BCD).
  static const int  radix;

  //:  Machine epsilon.
  //  The difference between 1 and the least value greater
  //    than 1 that is representable.  Equivalent to FLT_EPSILON, DBL_EPSILON,
  //    LDBL_EPSILON.
  //  Meaningful only for floating point types.
  static T epsilon();

  //:  Measure of the maximum rounding error.
  //  This has a precise definition in
  //    the Language Independent Arithmetic (LIA-1) standard.  Required by LIA-1.
  static T round_error();

  //: Minimum negative integer such that radix raised to that power is in range.
  //  Equivalent to FLT_MIN_EXP, DBL_MIN_EXP, LDBL_MIN_EXP.
  //  Meaningful only for floating point types.
  static const int  min_exponent;

  //: Minimum negative integer such that 10 raised to that power is in range.
  //  Equivalent to FLT_MIN_10_EXP, DBL_MIN_10_EXP, LDBL_MIN_10_EXP.
  //  Meaningful only for floating point types.
  static const int  min_exponent10;

  //: Maximum positive integer such that radix raised to that power is in range.
  //  Equivalent to FLT_MAX_EXP, DBL_MAX_EXP, LDBL_MAX_EXP.
  //  Meaningful only for floating point types.
  static const int  max_exponent;

  //: Maximum positive integer such that 10 raised to that power is in range.
  //  Equivalent to FLT_MAX_10_EXP, DBL_MAX_10_EXP, LDBL_MAX_10_EXP.
  //  Meaningful only for floating point types.
  static const int  max_exponent10;

  //: True if the type has a representation for positive infinity.
  //  Meaningful only for floating point types.
  //  Shall be true for all specializations in which is_iec559 == true.
  static const bool has_infinity;

  //: True if the type has a representation for a quiet (non-signaling).
  //  ``Not a Number.''.  RLIA
  //  Meaningful only for floating point types.
  //  Shall be true for all specializations in which is_iec559 == true.
  static const bool has_quiet_NaN;

  //: True if the type has a representation for a signaling.
  //  ``Not a Number.''.
  //  Meaningful only for floating point types.
  //  Shall be true for all specializations in which is_iec559 == true.
  static const bool has_signaling_NaN;

  //: True if the type allows denormalized values (variable number of exponent bits).
  //  Meaningful only for floating point types.
  static const bool has_denorm;

  //: Representation of positive infinity, if available.
  static T infinity();

  //: Representation of a quiet ``Not a Number,'' if available.
  static T quiet_NaN();

  //: Representation of a signaling ``Not a Number,'' if available.
  static T signaling_NaN();

  //: Minimum positive denormalized value.
  //  Meaningful for all floating point types.
  //  In specializations for which has_denorm == false, returns the  minimum
  //    positive normalized value.
  //  For types with has_denorm == false, the member denorm_min() shall
  //    return the same value as the member min().
  static T denorm_min();

  //: True if and only if the type adheres to IEC 559 standard.
  //  International Electrotechnical Commission standard 559 is the same as IEEE 754.
  static const bool is_iec559;

  //: True if the set of values representable by the type is finite.
  //  All built-in types are bounded, this member would be false for arbitrary
  //  precision types.
  static const bool is_bounded;

  //: True if the type is modulo.
  //  A type is modulo if it is  possible to add two positive numbers and have
  //  a result which wraps around to a third number which is less.
  //  Generally, this is false for floating types, true for unsigned integers,
  //  and true for signed integers on most machines.
  static const bool is_modulo;

  //: True if trapping is implemented for the type.
  static const bool traps;

  //: True if tinyness is detected before rounding. Refer to IEC 559.
  static const bool tinyness_before;

  //: The rounding style for the type. Equivalent to FLT_ROUNDS.
  //  Specializations for integer types shall return round_toward_zero.
  static const vcl_float_round_style round_style;
};

// SPECIALIZATIONS :

VCL_DEFINE_SPECIALIZATION
class vcl_numeric_limits<int>
{
 public:
  static const bool is_specialized VCL_STATIC_CONST_INIT_INT_DECL(true);
  inline static int min() { return -0x7fffffff; }
  inline static int max() { return  0x7fffffff; }
  static const int digits   VCL_STATIC_CONST_INIT_INT_DECL(31);
  static const int digits10 VCL_STATIC_CONST_INIT_INT_DECL(9);
  static const bool is_signed  VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_integer VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_exact   VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const int radix VCL_STATIC_CONST_INIT_INT_DECL(2);
  inline static int epsilon()     { return 0; }
  inline static int round_error() { return 0; }
  static const int min_exponent   VCL_STATIC_CONST_INIT_INT_DECL(-31);
  static const int min_exponent10 VCL_STATIC_CONST_INIT_INT_DECL(-9);
  static const int max_exponent   VCL_STATIC_CONST_INIT_INT_DECL(31);
  static const int max_exponent10 VCL_STATIC_CONST_INIT_INT_DECL(9);
  static const bool has_infinity      VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_quiet_NaN     VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_signaling_NaN VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_denorm        VCL_STATIC_CONST_INIT_INT_DECL(false);
  static int infinity() { return max(); }
  static int quiet_NaN();
  static int signaling_NaN();
  inline static int denorm_min()    { return min(); }
  static const bool is_iec559  VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool is_bounded VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_modulo  VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool traps      VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool tinyness_before VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const vcl_float_round_style round_style VCL_STATIC_CONST_INIT_INT_DECL(vcl_round_toward_zero);
};


VCL_DEFINE_SPECIALIZATION
class vcl_numeric_limits<unsigned int>
{
 public:
  static const bool is_specialized VCL_STATIC_CONST_INIT_INT_DECL(true);
  inline static unsigned int min() { return 0; }
  inline static unsigned int max() { return 0xffffffff; }
  static const int digits   VCL_STATIC_CONST_INIT_INT_DECL(sizeof(unsigned long) * 8 );
  static const int digits10 VCL_STATIC_CONST_INIT_INT_DECL( (digits * 301) / 1000 );
  static const bool is_signed  VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool is_integer VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_exact   VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const int radix VCL_STATIC_CONST_INIT_INT_DECL(2);
  inline static int epsilon()     { return 0; }
  inline static int round_error() { return 0; }
  static const int min_exponent   VCL_STATIC_CONST_INIT_INT_DECL(-31);
  static const int min_exponent10 VCL_STATIC_CONST_INIT_INT_DECL(-9);
  static const int max_exponent   VCL_STATIC_CONST_INIT_INT_DECL(31);
  static const int max_exponent10 VCL_STATIC_CONST_INIT_INT_DECL(9);
  static const bool has_infinity      VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_quiet_NaN     VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_signaling_NaN VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_denorm        VCL_STATIC_CONST_INIT_INT_DECL(false);
  static int infinity() { return max(); }
  static int quiet_NaN();
  static int signaling_NaN();
  inline static int denorm_min()    { return min(); }
  static const bool is_iec559  VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool is_bounded VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_modulo  VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool traps      VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool tinyness_before VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const vcl_float_round_style round_style VCL_STATIC_CONST_INIT_INT_DECL(vcl_round_toward_zero);
};

VCL_DEFINE_SPECIALIZATION
class vcl_numeric_limits<long>
{
 public:
  static const bool is_specialized VCL_STATIC_CONST_INIT_INT_DECL(true);
  inline static int min() { return -0x7fffffff; }
  inline static int max() { return  0x7fffffff; }
  static const int digits   VCL_STATIC_CONST_INIT_INT_DECL(31);
  static const int digits10 VCL_STATIC_CONST_INIT_INT_DECL(9);
  static const bool is_signed  VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_integer VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_exact   VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const int radix VCL_STATIC_CONST_INIT_INT_DECL(2);
  inline static int epsilon()     { return 0; }
  inline static int round_error() { return 0; }
  static const int min_exponent   VCL_STATIC_CONST_INIT_INT_DECL(-31);
  static const int min_exponent10 VCL_STATIC_CONST_INIT_INT_DECL(-9);
  static const int max_exponent   VCL_STATIC_CONST_INIT_INT_DECL(31);
  static const int max_exponent10 VCL_STATIC_CONST_INIT_INT_DECL(9);
  static const bool has_infinity      VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_quiet_NaN     VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_signaling_NaN VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_denorm        VCL_STATIC_CONST_INIT_INT_DECL(false);
  static int infinity() { return max(); }
  static int quiet_NaN();
  static int signaling_NaN();
  inline static int denorm_min()    { return min(); }
  static const bool is_iec559  VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool is_bounded VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_modulo  VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool traps      VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool tinyness_before VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const vcl_float_round_style round_style VCL_STATIC_CONST_INIT_INT_DECL(vcl_round_toward_zero);
};


VCL_DEFINE_SPECIALIZATION
class vcl_numeric_limits<unsigned long>
{
 public:
  static const bool is_specialized VCL_STATIC_CONST_INIT_INT_DECL(true);
  inline static unsigned int min() { return 0; }
  inline static unsigned int max() { return 0xffffffff; }
  static const int digits   VCL_STATIC_CONST_INIT_INT_DECL(sizeof(unsigned long) * 8 );
  static const int digits10 VCL_STATIC_CONST_INIT_INT_DECL( (digits * 301) / 1000 );
  static const bool is_signed  VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool is_integer VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_exact   VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const int radix VCL_STATIC_CONST_INIT_INT_DECL(2);
  inline static int epsilon()     { return 0; }
  inline static int round_error() { return 0; }
  static const int min_exponent   VCL_STATIC_CONST_INIT_INT_DECL(-31);
  static const int min_exponent10 VCL_STATIC_CONST_INIT_INT_DECL(-9);
  static const int max_exponent   VCL_STATIC_CONST_INIT_INT_DECL(31);
  static const int max_exponent10 VCL_STATIC_CONST_INIT_INT_DECL(9);
  static const bool has_infinity      VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_quiet_NaN     VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_signaling_NaN VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_denorm        VCL_STATIC_CONST_INIT_INT_DECL(false);
  static int infinity() { return max(); }
  static int quiet_NaN();
  static int signaling_NaN();
  inline static int denorm_min()    { return min(); }
  static const bool is_iec559  VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool is_bounded VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_modulo  VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool traps      VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool tinyness_before VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const vcl_float_round_style round_style VCL_STATIC_CONST_INIT_INT_DECL(vcl_round_toward_zero);
};


VCL_DEFINE_SPECIALIZATION
class vcl_numeric_limits<unsigned short >
{
 public:
  static const bool is_specialized VCL_STATIC_CONST_INIT_INT_DECL(true);
  inline static unsigned int min() { return 0; }
  inline static unsigned int max() { return 0xffff; }
  static const int digits   VCL_STATIC_CONST_INIT_INT_DECL(sizeof(unsigned short) * 8 );
  static const int digits10 VCL_STATIC_CONST_INIT_INT_DECL( (digits * 301) / 1000 );
  static const bool is_signed  VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool is_integer VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_exact   VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const int radix VCL_STATIC_CONST_INIT_INT_DECL(2);
  inline static int epsilon()     { return 0; }
  inline static int round_error() { return 0; }
  static const int min_exponent   VCL_STATIC_CONST_INIT_INT_DECL(-31);
  static const int min_exponent10 VCL_STATIC_CONST_INIT_INT_DECL(-9);
  static const int max_exponent   VCL_STATIC_CONST_INIT_INT_DECL(31);
  static const int max_exponent10 VCL_STATIC_CONST_INIT_INT_DECL(9);
  static const bool has_infinity      VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_quiet_NaN     VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_signaling_NaN VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_denorm        VCL_STATIC_CONST_INIT_INT_DECL(false);
  static int infinity() { return max(); }
  static int quiet_NaN();
  static int signaling_NaN();
  inline static int denorm_min()    { return min(); }
  static const bool is_iec559  VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool is_bounded VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_modulo  VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool traps      VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool tinyness_before VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const vcl_float_round_style round_style VCL_STATIC_CONST_INIT_INT_DECL(vcl_round_toward_zero);
};


VCL_DEFINE_SPECIALIZATION
class vcl_numeric_limits<short >
{
 public:
  static const bool is_specialized VCL_STATIC_CONST_INIT_INT_DECL(true);
  inline static int min() { return -0x7fff; }
  inline static int max() { return  0x7fff; }
  static const int digits   VCL_STATIC_CONST_INIT_INT_DECL(15);
  static const int digits10 VCL_STATIC_CONST_INIT_INT_DECL(5);
  static const bool is_signed  VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_integer VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_exact   VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const int radix VCL_STATIC_CONST_INIT_INT_DECL(2);
  inline static int epsilon()     { return 0; }
  inline static int round_error() { return 0; }
  static const int min_exponent   VCL_STATIC_CONST_INIT_INT_DECL(-15);
  static const int min_exponent10 VCL_STATIC_CONST_INIT_INT_DECL(-5);
  static const int max_exponent   VCL_STATIC_CONST_INIT_INT_DECL(15);
  static const int max_exponent10 VCL_STATIC_CONST_INIT_INT_DECL(5);
  static const bool has_infinity      VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_quiet_NaN     VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_signaling_NaN VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_denorm        VCL_STATIC_CONST_INIT_INT_DECL(false);
  static int infinity() { return max(); }
  static int quiet_NaN();
  static int signaling_NaN();
  inline static int denorm_min()    { return min(); }
  static const bool is_iec559  VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool is_bounded VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_modulo  VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool traps      VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool tinyness_before VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const vcl_float_round_style round_style VCL_STATIC_CONST_INIT_INT_DECL(vcl_round_toward_zero);
};


VCL_DEFINE_SPECIALIZATION
class vcl_numeric_limits<signed char >
{
 public:
  static const bool is_specialized VCL_STATIC_CONST_INIT_INT_DECL(true);
  inline static int min() { return -0x80; }
  inline static int max() { return  0x7f; }
  static const int digits   VCL_STATIC_CONST_INIT_INT_DECL(7);
  static const int digits10 VCL_STATIC_CONST_INIT_INT_DECL(3);
  static const bool is_signed  VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_integer VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_exact   VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const int radix VCL_STATIC_CONST_INIT_INT_DECL(2);
  inline static int epsilon()     { return 0; }
  inline static int round_error() { return 0; }
  static const int min_exponent   VCL_STATIC_CONST_INIT_INT_DECL(-15);
  static const int min_exponent10 VCL_STATIC_CONST_INIT_INT_DECL(-5);
  static const int max_exponent   VCL_STATIC_CONST_INIT_INT_DECL(15);
  static const int max_exponent10 VCL_STATIC_CONST_INIT_INT_DECL(5);
  static const bool has_infinity      VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_quiet_NaN     VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_signaling_NaN VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_denorm        VCL_STATIC_CONST_INIT_INT_DECL(false);
  static int infinity() { return max(); }
  static int quiet_NaN();
  static int signaling_NaN();
  inline static int denorm_min()    { return min(); }
  static const bool is_iec559  VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool is_bounded VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_modulo  VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool traps      VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool tinyness_before VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const vcl_float_round_style round_style VCL_STATIC_CONST_INIT_INT_DECL(vcl_round_toward_zero);
};


VCL_DEFINE_SPECIALIZATION
class vcl_numeric_limits<unsigned char >
{
 public:
  static const bool is_specialized VCL_STATIC_CONST_INIT_INT_DECL(true);
  inline static int min() { return 0x0; }
  inline static int max() { return  0xff; }
  static const int digits   VCL_STATIC_CONST_INIT_INT_DECL(8);
  static const int digits10 VCL_STATIC_CONST_INIT_INT_DECL(3);
  static const bool is_signed  VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool is_integer VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_exact   VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const int radix VCL_STATIC_CONST_INIT_INT_DECL(2);
  inline static int epsilon()     { return 0; }
  inline static int round_error() { return 0; }
  static const int min_exponent   VCL_STATIC_CONST_INIT_INT_DECL(-15);
  static const int min_exponent10 VCL_STATIC_CONST_INIT_INT_DECL(-5);
  static const int max_exponent   VCL_STATIC_CONST_INIT_INT_DECL(15);
  static const int max_exponent10 VCL_STATIC_CONST_INIT_INT_DECL(5);
  static const bool has_infinity      VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_quiet_NaN     VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_signaling_NaN VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool has_denorm        VCL_STATIC_CONST_INIT_INT_DECL(false);
  static int infinity() { return max(); }
  static int quiet_NaN();
  static int signaling_NaN();
  inline static int denorm_min()    { return min(); }
  static const bool is_iec559  VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool is_bounded VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_modulo  VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool traps      VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool tinyness_before VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const vcl_float_round_style round_style VCL_STATIC_CONST_INIT_INT_DECL(vcl_round_toward_zero);
};

#if VCL_CHAR_IS_SIGNED
VCL_DEFINE_SPECIALIZATION
class vcl_numeric_limits<char>: public vcl_numeric_limits<signed char> {};
#else
VCL_DEFINE_SPECIALIZATION
class vcl_numeric_limits<char>: public vcl_numeric_limits<unsigned char> {};
#endif

// IEEE 754 single precision
VCL_DEFINE_SPECIALIZATION
class vcl_numeric_limits<float>
{
 public:
  static const bool is_specialized VCL_STATIC_CONST_INIT_INT_DECL(true);
  inline static float min() { return 1.17549435E-38F; }
  inline static float max() { return 3.40282347E+38F; }
  static const int digits   VCL_STATIC_CONST_INIT_INT_DECL(24);
  static const int digits10 VCL_STATIC_CONST_INIT_INT_DECL(6);
  static const bool is_signed  VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_integer VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool is_exact   VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const int radix VCL_STATIC_CONST_INIT_INT_DECL(2);
  inline static float epsilon()     { return 1.19209290E-07F; }
  inline static float round_error() { return 0.5F; }
  static const int min_exponent   VCL_STATIC_CONST_INIT_INT_DECL(-125);
  static const int min_exponent10 VCL_STATIC_CONST_INIT_INT_DECL(-37);
  static const int max_exponent   VCL_STATIC_CONST_INIT_INT_DECL(128);
  static const int max_exponent10 VCL_STATIC_CONST_INIT_INT_DECL(38);
  static const bool has_infinity      VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool has_quiet_NaN     VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool has_signaling_NaN VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool has_denorm        VCL_STATIC_CONST_INIT_INT_DECL(false);
  static float infinity();
  static float quiet_NaN();
  static float signaling_NaN();
  inline static float denorm_min()    { return min(); }
  static const bool is_iec559  VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_bounded VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_modulo  VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool traps      VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool tinyness_before VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const vcl_float_round_style round_style VCL_STATIC_CONST_INIT_INT_DECL(vcl_round_to_nearest);
};


// IEEE 754 double precision with denorm
VCL_DEFINE_SPECIALIZATION
class vcl_numeric_limits<double>
{
 public:
  static const bool is_specialized VCL_STATIC_CONST_INIT_INT_DECL(true);
  inline static double min() { return 2.2250738585072014e-308; }
  inline static double max() { return 1.7976931348623157e+308; }
  static const int digits   VCL_STATIC_CONST_INIT_INT_DECL(53);
  static const int digits10 VCL_STATIC_CONST_INIT_INT_DECL(15);
  static const bool is_signed  VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_integer VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool is_exact   VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const int radix VCL_STATIC_CONST_INIT_INT_DECL(2);
  inline static double epsilon()     { return 2.220446049250313e-16; }
  inline static double round_error() { return 0.5; }
  static const int min_exponent   VCL_STATIC_CONST_INIT_INT_DECL(-1021);
  static const int min_exponent10 VCL_STATIC_CONST_INIT_INT_DECL(-307);
  static const int max_exponent   VCL_STATIC_CONST_INIT_INT_DECL(1024);
  static const int max_exponent10 VCL_STATIC_CONST_INIT_INT_DECL(308);
  static const bool has_infinity      VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool has_quiet_NaN     VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool has_signaling_NaN VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool has_denorm        VCL_STATIC_CONST_INIT_INT_DECL(false);
  static double infinity();
  static double quiet_NaN();
  static double signaling_NaN();
  inline static double denorm_min() { return /* 5e-324 */ min(); }
  static const bool is_iec559  VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_bounded VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_modulo  VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool traps      VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool tinyness_before VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const vcl_float_round_style round_style VCL_STATIC_CONST_INIT_INT_DECL(vcl_round_to_nearest);
};


VCL_DEFINE_SPECIALIZATION
class vcl_numeric_limits<long double>
{
 public:
  static const bool is_specialized VCL_STATIC_CONST_INIT_INT_DECL(true);
  inline static long double max() { return 1.7976931348623157e+308; }
  inline static long double min() { return 2.2250738585072014e-308; }
  inline static long double denorm_min() { return min(); }
  static const int digits   VCL_STATIC_CONST_INIT_INT_DECL(53);
  static const int digits10 VCL_STATIC_CONST_INIT_INT_DECL(15);
  static const bool is_signed  VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_integer VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool is_exact   VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const int radix VCL_STATIC_CONST_INIT_INT_DECL(2);
  inline static long double epsilon() { return 2.220446049250313e-16; } // TODO: should become dependent of sizeof(long double)
  inline static long double round_error() { return 0.5; }
  static const int min_exponent   VCL_STATIC_CONST_INIT_INT_DECL(-1021);
  static const int min_exponent10 VCL_STATIC_CONST_INIT_INT_DECL(-307);
  static const int max_exponent   VCL_STATIC_CONST_INIT_INT_DECL(1024);
  static const int max_exponent10 VCL_STATIC_CONST_INIT_INT_DECL(308);
  static const bool has_infinity      VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool has_quiet_NaN     VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool has_signaling_NaN VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool has_denorm        VCL_STATIC_CONST_INIT_INT_DECL(false);
  static long double infinity();
  static long double quiet_NaN();
  static long double signaling_NaN();
  static const bool is_iec559  VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_bounded VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool is_modulo  VCL_STATIC_CONST_INIT_INT_DECL(false);
  static const bool traps      VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const bool tinyness_before VCL_STATIC_CONST_INIT_INT_DECL(true);
  static const vcl_float_round_style round_style VCL_STATIC_CONST_INIT_INT_DECL(vcl_round_to_nearest);
};

#endif // emulation_vcl_limits_h_