This file is indexed.

/usr/include/ITK-4.5/emulation/vcl_tree.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
// This is vcl/emulation/vcl_tree.h
#ifndef vcl_emulation_tree_h
#define vcl_emulation_tree_h
#ifdef VCL_NEEDS_PRAGMA_INTERFACE
#pragma interface
#endif

/*
 *
 * Copyright (c) 1996
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 * Exception Handling:
 * Copyright (c) 1997
 * Mark of the Unicorn, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Mark of the Unicorn makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 * Adaptation:
 * Copyright (c) 1997
 * Moscow Center for SPARC Technology
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Moscow Center for SPARC Technology makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 */

/*

Red-black vcl_tree class, designed for use in implementing STL
associative containers (vcl_set, vcl_multiset, vcl_map, and vcl_multimap). The
insertion and deletion algorithms are based on those in Cormen,
Leiserson, and Rivest, Introduction to Algorithms (MIT Press, 1990),
except that

(1) the header cell is maintained with links not only to the root
but also to the leftmost node of the vcl_tree, to enable constant time
begin(), and to the rightmost node of the vcl_tree, to enable linear time
performance when used with the generic vcl_set algorithms (set_union,
etc.);

(2) when a node being deleted has two children its successor node is
relinked into its place, rather than copied, so that the only
iterators invalidated are those referring to the deleted node.

*/

#include <vcl_cstddef.h>
#include "vcl_algobase.h"
#include "vcl_iterator.h"
#include "vcl_alloc.h"

# if defined ( __STL_USE_ABBREVS )
// ugliness is intentional - to reduce conflicts possibility
#  define __rb_tree_node_base       rbTNB
#  define __rb_tree_node            rbTN
#  define __rb_tree_base_iterator   rbTBIt
#  define __rb_tree_iterator        rbTIt
#  define __rb_tree_const_iterator  rbTcIt
#  define __rb_tree_base            rbTB
# endif

typedef bool __rb_tree_color_type;
const __rb_tree_color_type __rb_tree_red = false;
const __rb_tree_color_type __rb_tree_black = true;

struct __rb_tree_node_base
{
  typedef __rb_tree_color_type color_type;
  typedef __rb_tree_node_base* base_ptr;

  color_type color;
  base_ptr parent;
  base_ptr left;
  base_ptr right;

  static base_ptr minimum(base_ptr x)
  {
    while (x->left != 0) x = x->left;
    return x;
  }

  static base_ptr maximum(base_ptr x)
  {
    while (x->right != 0) x = x->right;
    return x;
  }
};

template <class Value>
struct __rb_tree_node : public __rb_tree_node_base
{
  Value value_field;
};


struct __rb_tree_base_iterator
{
  typedef __rb_tree_node_base::base_ptr base_ptr;
  typedef vcl_ptrdiff_t distance_type;
  base_ptr node;
  void increment()
  {
    __stl_verbose_assert(valid(), __STL_MSG_INVALID_ITERATOR);
    __stl_verbose_assert(node!=owner(), __STL_MSG_INVALID_ADVANCE);
    if (node->right != 0) {
      node = node->right;
      while (node->left != 0)
        node = node->left;
    }
    else {
      base_ptr y = node->parent;
      while (node == y->right) {
        node = y;
        y = y->parent;
      }
      if (node->right != y)
        node = y;
    }
  }

  void decrement()
  {
    __stl_verbose_assert(valid(), __STL_MSG_INVALID_ITERATOR);
    __stl_verbose_assert(node!=owner()->left, __STL_MSG_INVALID_ADVANCE);
    if (node->color == __rb_tree_red &&
        node->parent->parent == node)
      node = node->right;
    else if (node->left != 0) {
      base_ptr y = node->left;
      while (y->right != 0)
        y = y->right;
      node = y;
    }
    else {
      base_ptr y = node->parent;
      while (node == y->left) {
        node = y;
        y = y->parent;
      }
      node = y;
    }
  }
};

template <class Value>
struct __rb_tree_iterator : public __rb_tree_base_iterator
{
  typedef Value& reference;
  typedef Value* pointer;
  typedef const Value& const_reference;
  typedef __rb_tree_node<Value>* link_type;
 private:
  typedef __rb_tree_iterator<Value> self;
 public:
  __rb_tree_iterator() {}
  __rb_tree_iterator(link_type x) { node = x; }
  reference operator*() const {
      __stl_verbose_assert(node!=owner(), __STL_MSG_NOT_DEREFERENCEABLE);
      return link_type(node)->value_field;
  }

//  pointer operator->() const { return &(operator*()); }
// This is not const correct and gives warnings and
// compile errors on the PC  WAH

  self& operator++() { increment(); return *this; }
  self operator++(int) {
    self tmp = *this;
    increment();
    return tmp;
  }

  self& operator--() { decrement(); return *this; }
  self operator--(int) {
    self tmp = *this;
    decrement();
    return tmp;
  }
};

template <class Value>
struct __rb_tree_const_iterator : public __rb_tree_base_iterator
{
  typedef Value& reference;
  typedef const Value& const_reference;
  typedef Value* pointer;
  typedef Value const* const_pointer;
  typedef __rb_tree_node<Value>* link_type;
  typedef __rb_tree_const_iterator<Value> self;
 public:
  __rb_tree_const_iterator() {}
  __rb_tree_const_iterator(link_type x) { node = x; }
  __rb_tree_const_iterator(const __rb_tree_iterator<Value>& it) { node = it.node; }

  const_reference operator*() const {
      __stl_verbose_assert(node!=owner(), __STL_MSG_NOT_DEREFERENCEABLE);
      return link_type(node)->value_field;
  }

//  pointer operator->() const { return &(operator*()); }
// This is not const correct and gives warnings and
// compile errors on the PC  WAH

  self& operator++() { increment(); return *this; }
  self operator++(int) {
    self tmp = *this;
    increment();
    return tmp;
  }

  self& operator--() { decrement(); return *this; }
  self operator--(int) {
    self tmp = *this;
    decrement();
    return tmp;
  }
};


inline bool operator==(const __rb_tree_base_iterator& x,
                       const __rb_tree_base_iterator& y) {
  __stl_debug_check(__check_same_owner(x,y));
  return x.node == y.node;
}

inline bool operator!=(const __rb_tree_base_iterator& x,
                       const __rb_tree_base_iterator& y) {
  return x.node != y.node;
}

inline vcl_bidirectional_iterator_tag
iterator_category(const __rb_tree_base_iterator&) {
  return vcl_bidirectional_iterator_tag();
}

inline __rb_tree_base_iterator::distance_type*
distance_type(const __rb_tree_base_iterator&) {
  return (__rb_tree_base_iterator::distance_type*) 0;
}

template <class Value>
inline Value* value_type(const __rb_tree_iterator<Value>&) {
  return (Value*) 0;
}

template <class Value>
inline Value* value_type(const __rb_tree_const_iterator<Value>&) {
  return (Value*) 0;
}

inline void
__rb_tree_rotate_left(__rb_tree_node_base* x, __rb_tree_node_base*& root)
{
  __rb_tree_node_base* y = x->right;
  x->right = y->left;
  if (y->left != 0)
    y->left->parent = x;
  y->parent = x->parent;

  if (x == root)
    root = y;
  else if (x == x->parent->left)
    x->parent->left = y;
  else
    x->parent->right = y;
  y->left = x;
  x->parent = y;
}

inline void
__rb_tree_rotate_right(__rb_tree_node_base* x, __rb_tree_node_base*& root)
{
  __rb_tree_node_base* y = x->left;
  x->left = y->right;
  if (y->right != 0)
    y->right->parent = x;
  y->parent = x->parent;

  if (x == root)
    root = y;
  else if (x == x->parent->right)
    x->parent->right = y;
  else
    x->parent->left = y;
  y->right = x;
  x->parent = y;
}

inline void
__rb_tree_rebalance(__rb_tree_node_base* x, __rb_tree_node_base*& root)
{
  x->color = __rb_tree_red;
  while (x != root && x->parent->color == __rb_tree_red) {
    if (x->parent == x->parent->parent->left) {
      __rb_tree_node_base* y = x->parent->parent->right;
      if (y && y->color == __rb_tree_red) {
        x->parent->color = __rb_tree_black;
        y->color = __rb_tree_black;
        x->parent->parent->color = __rb_tree_red;
        x = x->parent->parent;
      }
      else {
        if (x == x->parent->right) {
          x = x->parent;
          __rb_tree_rotate_left(x, root);
        }
        x->parent->color = __rb_tree_black;
        x->parent->parent->color = __rb_tree_red;
        __rb_tree_rotate_right(x->parent->parent, root);
      }
    }
    else {
      __rb_tree_node_base* y = x->parent->parent->left;
      if (y && y->color == __rb_tree_red) {
        x->parent->color = __rb_tree_black;
        y->color = __rb_tree_black;
        x->parent->parent->color = __rb_tree_red;
        x = x->parent->parent;
      }
      else {
        if (x == x->parent->left) {
          x = x->parent;
          __rb_tree_rotate_right(x, root);
        }
        x->parent->color = __rb_tree_black;
        x->parent->parent->color = __rb_tree_red;
        __rb_tree_rotate_left(x->parent->parent, root);
      }
    }
  }
  root->color = __rb_tree_black;
}

inline __rb_tree_node_base*
__rb_tree_rebalance_for_erase(__rb_tree_node_base* z,
                              __rb_tree_node_base*& root,
                              __rb_tree_node_base*& leftmost,
                              __rb_tree_node_base*& rightmost)
{
  __rb_tree_node_base* y = z;
  __rb_tree_node_base* x = 0;
  __rb_tree_node_base* x_parent = 0;
  if (y->left == 0)             // z has at most one non-null child. y == z.
    x = y->right;               // x might be null.
  else
    if (y->right == 0)          // z has exactly one non-null child.  y == z.
      x = y->left;              // x is not null.
    else {                      // z has two non-null children.  Set y to
      y = y->right;             //   z's successor.  x might be null.
      while (y->left != 0)
        y = y->left;
      x = y->right;
    }
  if (y != z) {                 // relink y in place of z.  y is z's successor
    z->left->parent = y;
    y->left = z->left;
    if (y != z->right) {
      x_parent = y->parent;
      if (x) x->parent = y->parent;
      y->parent->left = x;      // y must be a left child
      y->right = z->right;
      z->right->parent = y;
    }
    else
      x_parent = y;
    if (root == z)
      root = y;
    else if (z->parent->left == z)
      z->parent->left = y;
    else
      z->parent->right = y;
    y->parent = z->parent;
    vcl_swap(y->color, z->color);
    y = z;
    // y now points to node to be actually deleted
  }
  else {                        // y == z
    x_parent = y->parent;
    if (x) x->parent = y->parent;
    if (root == z)
      root = x;
    else
      if (z->parent->left == z)
        z->parent->left = x;
      else
        z->parent->right = x;
    if (leftmost == z)
      if (z->right == 0)        // z->left must be null also
        leftmost = z->parent;
    // makes leftmost == header if z == root
      else
        leftmost = __rb_tree_node_base::minimum(x);
    if (rightmost == z)
      if (z->left == 0)         // z->right must be null also
        rightmost = z->parent;
    // makes rightmost == header if z == root
      else                      // x == z->left
        rightmost = __rb_tree_node_base::maximum(x);
  }
  if (y->color != __rb_tree_red) {
    while (x != root && (x == 0 || x->color == __rb_tree_black))
      if (x == x_parent->left) {
        __rb_tree_node_base* w = x_parent->right;
        if (w->color == __rb_tree_red) {
          w->color = __rb_tree_black;
          x_parent->color = __rb_tree_red;
          __rb_tree_rotate_left(x_parent, root);
          w = x_parent->right;
        }
        if ((w->left == 0 || w->left->color == __rb_tree_black) &&
            (w->right == 0 || w->right->color == __rb_tree_black)) {
          w->color = __rb_tree_red;
          x = x_parent;
          x_parent = x_parent->parent;
        } else {
          if (w->right == 0 || w->right->color == __rb_tree_black) {
            if (w->left) w->left->color = __rb_tree_black;
            w->color = __rb_tree_red;
            __rb_tree_rotate_right(w, root);
            w = x_parent->right;
          }
          w->color = x_parent->color;
          x_parent->color = __rb_tree_black;
          if (w->right) w->right->color = __rb_tree_black;
          __rb_tree_rotate_left(x_parent, root);
          break;
        }
      } else {                  // same as above, with right <-> left.
        __rb_tree_node_base* w = x_parent->left;
        if (w->color == __rb_tree_red) {
          w->color = __rb_tree_black;
          x_parent->color = __rb_tree_red;
          __rb_tree_rotate_right(x_parent, root);
          w = x_parent->left;
        }
        if ((w->right == 0 || w->right->color == __rb_tree_black) &&
            (w->left == 0 || w->left->color == __rb_tree_black)) {
          w->color = __rb_tree_red;
          x = x_parent;
          x_parent = x_parent->parent;
        } else {
          if (w->left == 0 || w->left->color == __rb_tree_black) {
            if (w->right) w->right->color = __rb_tree_black;
            w->color = __rb_tree_red;
            __rb_tree_rotate_left(w, root);
            w = x_parent->left;
          }
          w->color = x_parent->color;
          x_parent->color = __rb_tree_black;
          if (w->left) w->left->color = __rb_tree_black;
          __rb_tree_rotate_right(x_parent, root);
          break;
        }
      }
    if (x) x->color = __rb_tree_black;
  }
  return y;
}

template <class Value, class Alloc>
class __rb_tree_base
{
    typedef __rb_tree_base<Value,Alloc> self;
 public:
    typedef Value value_type;
    typedef value_type* pointer;
    typedef const value_type* const_pointer;
    typedef value_type& reference;
    typedef const value_type& const_reference;
    typedef vcl_size_t size_type;
    typedef vcl_ptrdiff_t difference_type;
 protected:
    typedef __rb_tree_node_base* base_ptr;
    typedef __rb_tree_node<Value> rb_tree_node;
    typedef __rb_tree_color_type color_type;
    typedef rb_tree_node* link_type;
    typedef vcl_simple_alloc<rb_tree_node, Alloc> rb_tree_node_allocator;
    static link_type get_node() { return rb_tree_node_allocator::allocate(); }
    static void put_node(link_type p) { rb_tree_node_allocator::deallocate(p); }
 protected:
    link_type header;

    link_type& root() const { return (link_type&) header->parent; }
    link_type& leftmost() const { return (link_type&) header->left; }
    link_type& rightmost() const { return (link_type&) header->right; }
    size_type node_count; // keeps track of size of vcl_tree

    static link_type& left(link_type x) { return (link_type&)(x->left); }
    static link_type& right(link_type x) { return (link_type&)(x->right); }
    static link_type& parent(link_type x) { return (link_type&)(x->parent); }
    static reference value(link_type x) { return x->value_field; }
    static color_type& color(link_type x) { return (color_type&)(x->color); }

    static link_type& left(base_ptr x) { return (link_type&)(x->left); }
    static link_type& right(base_ptr x) { return (link_type&)(x->right); }
    static link_type& parent(base_ptr x) { return (link_type&)(x->parent); }
    static reference value(base_ptr x) { return ((link_type)x)->value_field; }
    static color_type& color(base_ptr x) { return (color_type&)(link_type(x)->color); }

    static link_type minimum(link_type x) {
        return (link_type)  __rb_tree_node_base::minimum(x);
    }
    static link_type maximum(link_type x) {
        return (link_type) __rb_tree_node_base::maximum(x);
    }

 public:
    __rb_tree_base() : header( get_node() ), node_count(0) {
        color(header) = __rb_tree_red; // used to distinguish header from
        // root, in iterator.operator++
        __stl_debug_do(iter_list.safe_init(header));
    }
    ~__rb_tree_base() {
        put_node(header);
        __stl_debug_do(iter_list.invalidate());
    }

 public:
    bool empty() const { return node_count == 0; }
    size_type size() const { return node_count; }
    size_type max_size() const { return size_type(-1); }

 protected:
    static link_type __new_node(const value_type& v) {
        link_type z = get_node();
        IUEg__TRY {
        vcl_construct(&(value(z)), v);
        left(z) = 0;
        right(z) = 0;
        }
#  if defined (__STL_USE_EXCEPTIONS)
        catch(...) {
            put_node(z);
            throw;
        }
#  endif
        return z;
    }
    static inline link_type __copy_aux(link_type x, link_type p);
    static inline void __erase(link_type x);
    static inline link_type __copy(link_type x, link_type p);

 public:
    void clear() {
      if (node_count != 0) {
        __erase(root());
        leftmost() = header;
        root() = 0;
        rightmost() = header;
        node_count = 0;
        __stl_debug_do(invalidate_all());
      }
    }
};

template <class Key, class Value, class KeyOfValue, class Compare, VCL_DFL_TYPE_PARAM_STLDECL(Alloc,vcl_alloc) >
class rb_tree : public __rb_tree_base<Value,Alloc>
{
  typedef __rb_tree_base<Value,Alloc> super;
  typedef rb_tree<Key,Value,KeyOfValue,Compare,Alloc> self;
 public:
  __IMPORT_CONTAINER_TYPEDEFS(super)
  typedef __rb_tree_node_base* base_ptr;
  typedef __rb_tree_node<Value> rb_tree_node;
  typedef __rb_tree_color_type color_type;
  typedef rb_tree_node* link_type;
  typedef __rb_tree_iterator<value_type> iterator;
  typedef __rb_tree_const_iterator<value_type> const_iterator;
  typedef vcl_reverse_bidirectional_iterator<iterator, value_type, reference,
                                             difference_type> reverse_iterator;
  typedef vcl_reverse_bidirectional_iterator<const_iterator, value_type,
                                             const_reference, difference_type>
      const_reverse_iterator;
  typedef Key key_type;
 protected:
  Compare key_compare;
  static const Key& key(link_type x) { return KeyOfValue()(value(x)); }
  static const Key& key(base_ptr x) { return KeyOfValue()(value(link_type(x)));}
 private:
  inline iterator __insert(base_ptr x, base_ptr y, const value_type& v);
  void init() {
      root() = 0;
      leftmost() = header;
      rightmost() = header;
  }
 public:
  // allocation/deallocation
  rb_tree(): key_compare(Compare())  { init(); }
  rb_tree(const Compare& comp): key_compare(comp)  { init(); }
  rb_tree(const self& x)
    : key_compare(x.key_compare)  {
      root() = __copy(x.root(), header);
      if (root() == 0) {
          leftmost() = header;
          rightmost() = header;
      } else {
          leftmost() = minimum(root());
          rightmost() = maximum(root());
      }
      node_count = x.node_count;
  }

  ~rb_tree() { clear();}
  inline self& operator=(const self& x);

 public:
  // accessors:
  iterator make_iterator(link_type l) { return iterator(l); }
  const_iterator make_const_iterator(link_type l) const { return const_iterator(l); }
  iterator begin() { return leftmost(); }
  const_iterator begin() const { return leftmost(); }
  iterator end() { return header; }
  const_iterator end() const { return header; }
  reverse_iterator rbegin() { return reverse_iterator(end()); }
  const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
  reverse_iterator rend() { return reverse_iterator(begin()); }
  const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
  Compare key_comp() const { return key_compare; }

  void swap(self& t) {
      __stl_debug_do(iter_list.swap_owners(t.iter_list));
      vcl_swap(header, t.header);
      vcl_swap(node_count, t.node_count);
      vcl_swap(key_compare, t.key_compare);
  }

 public:
  // insert/erase
  vcl_pair<iterator,bool> insert_unique(const value_type& v){
    link_type y = header;
    link_type x = root();
    bool comp = true;
    while (x != 0) {
        y = x;
        comp = key_compare(KeyOfValue()(v), key(x));
        x = comp ? left(x) : right(x);
    }
    iterator j = make_iterator(y);
    if (comp)
        if (j == begin())
            return vcl_pair<iterator,bool>(__insert(x, y, v), true);
        else
            --j;
    if (key_compare(key(j.node), KeyOfValue()(v)))
        return vcl_pair<iterator,bool>(__insert(x, y, v), true);
    return vcl_pair<iterator,bool>(j, false);
  }

  iterator insert_equal(const value_type& v){
    link_type y = header;
    link_type x = root();
    while (x != 0) {
        y = x;
        x = key_compare(KeyOfValue()(v), key(x)) ? left(x) : right(x);
    }
    return __insert(x, y, v);
  }

  iterator insert_unique(iterator position, const value_type& v){
    __stl_debug_check(__check_if_owner(header,position));
    if (position.node == header->left) // begin()
        if (size() > 0 && key_compare(KeyOfValue()(v), key(position.node)))
            return __insert(position.node, position.node, v);
            // first argument just needs to be non-null
        else
            return insert_unique(v).first;
    else if (position.node == header) // end()
        if (key_compare(key(rightmost()), KeyOfValue()(v)))
            return __insert(0, rightmost(), v);
        else
            return insert_unique(v).first;
    else {
        iterator before = position;
        --before;
        if (key_compare(key(before.node), KeyOfValue()(v))
            && key_compare(KeyOfValue()(v), key(position.node)))
            if (right(before.node) == 0)
                return __insert(0, before.node, v);
            else
                return __insert(position.node, position.node, v);
                // first argument just needs to be non-null
        else
            return insert_unique(v).first;
    }
  }

  iterator insert_equal(iterator position, const value_type& v){
    __stl_debug_check(__check_if_owner(header,position));
    if (position.node == header->left) // begin()
        if (size() > 0 && key_compare(KeyOfValue()(v), key(position.node)))
            return __insert(position.node, position.node, v);
            // first argument just needs to be non-null
        else
            return insert_equal(v);
    else if (position.node == header) // end()
        if (!key_compare(KeyOfValue()(v), key(rightmost())))
            return __insert(0, rightmost(), v);
        else
            return insert_equal(v);
    else {
        iterator before = position;
        --before;
        if (!key_compare(KeyOfValue()(v), key(before.node))
            && !key_compare(key(position.node), KeyOfValue()(v)))
            if (right(before.node) == 0)
                return __insert(0, before.node, v);
            else
                return __insert(position.node, position.node, v);
                // first argument just needs to be non-null
        else
            return insert_equal(v);
    }
  }

  void insert_unique(const_iterator    first, const_iterator    last){while (first != last) insert_unique(*first++);}
  void insert_unique(const value_type* first, const value_type* last){while (first != last) insert_unique(*first++);}
  void insert_equal(const_iterator first, const_iterator last) {
    while (first != last) insert_equal(*first++);
  }

  void insert_equal(const value_type* first, const value_type* last) {
    while (first != last) insert_equal(*first++);
  }

  inline void erase(iterator position);
  inline void erase(iterator first, iterator last);
  inline size_type erase(const key_type& x);
  inline void erase(const key_type* first, const key_type* last);

 public:
                                // vcl_set operations:
  inline iterator find(const key_type& x);
  inline const_iterator find(const key_type& x) const;
  inline size_type count(const key_type& x) const;
  inline iterator lower_bound(const key_type& x);
  inline const_iterator lower_bound(const key_type& x) const;
  inline iterator upper_bound(const key_type& x);
  inline const_iterator upper_bound(const key_type& x) const;
  inline vcl_pair<iterator,iterator> equal_range(const key_type& x);
  inline vcl_pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
 public:
                                // Debugging.
  inline bool __rb_verify() const;
};

// fbp: these defines are for outline methods definitions.
// needed for definitions to be portable. Should not be used in method bodies.
# if defined  ( __STL_NESTED_TYPE_PARAM_BUG )
#  define __iterator__        __rb_tree_iterator<Value>
#  define __const_iterator__  __rb_tree_const_iterator<Value>
#  define __size_type__       vcl_size_t
#  define __link_type__       __rb_tree_node<Value>*
#  define __base_ptr__        __rb_tree_node_base*
#  define __value_type__      Value
#  define __key_type__        Key
# else
#  define __iterator__        rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator
#  define __const_iterator__  rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator
#  define __link_type__       rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::link_type
#  define __size_type__       rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::size_type
#  define __base_ptr__        rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::base_ptr
#  define __value_type__      rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::value_type
#  define __key_type__        rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::key_type
# endif

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline bool operator==(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x,
                       const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) {
    return x.size() == y.size() && vcl_equal(x.begin(), x.end(), y.begin());
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline bool operator<(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x,
                      const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) {
    return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>&
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::operator=
(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x) {
    if (this != &x) {
        // can't be done as in vcl_list because Key may be a constant type
        clear();
        root() = __copy(x.root(), header);
        if (root() == 0) {
            leftmost() = header;
            rightmost() = header;
        } else {
            leftmost() = minimum(root());
            rightmost() = maximum(root());
        }
        node_count = x.node_count;
        key_compare = x.key_compare;
    }
    return *this;
}


template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename __iterator__
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::__insert(__base_ptr__ x_,
                                                          __base_ptr__ y_,
                                                          const __value_type__& v) {
    link_type x = (link_type) x_;
    link_type y = (link_type) y_;
    // determine link before allocating new node
    bool link_to_left = y == header || x != 0 || key_compare(KeyOfValue()(v), key(y));
    link_type z = __new_node(v);
    if (link_to_left) {
        left(y) = z;  // also makes leftmost() = z when y == header
        if (y == header) {
            root() = z;
            rightmost() = z;
        } else if (y == leftmost())
            leftmost() = z;   // maintain leftmost() pointing to minimum node
    } else {
        right(y) = z;
        if (y == rightmost())
            rightmost() = z;   // maintain rightmost() pointing to maximum node
    }
    parent(z) = y;
    left(z) = 0;
    right(z) = 0;
    __rb_tree_rebalance(z, header->parent);
    ++node_count;
    return make_iterator(z);
}


template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline void
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(__iterator__
                                                       position) {
    __stl_debug_check(__check_if_owner(header,position));
    __stl_verbose_assert(position.node!=header, __STL_MSG_ERASE_PAST_THE_END);
    __stl_debug_do(invalidate_iterator(position));
  link_type y = (link_type) __rb_tree_rebalance_for_erase(position.node,
                                                          header->parent,
                                                          header->left,
                                                          header->right);
  vcl_destroy(&(value(y)));
  put_node(y);
  --node_count;
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename __size_type__
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(const __key_type__& x) {
    vcl_pair<iterator,iterator> p = equal_range(x);
    size_type n = 0;
    vcl_distance(p.first, p.second, n);
    erase(p.first, p.second);
    return n;
}

template <class Value, class Alloc>
inline __rb_tree_node<Value>*
__rb_tree_base<Value, Alloc>::__copy(__rb_tree_node<Value>* x, __rb_tree_node<Value>* p) {
    link_type l;
#  if defined (__STL_USE_EXCEPTIONS)
    l = left(p);
#  endif
    IUEg__TRY {
    l = __copy_aux(x, p);
    }
#  if defined (__STL_USE_EXCEPTIONS)
    catch(...) {
        if (left(p) != l) {
            __erase(left(p));
            left(p) = l;
        }
        throw;
    }
#  endif
    return l;
}

template <class Value, class Alloc>
inline
__rb_tree_node<Value>*
__rb_tree_base<Value, Alloc>::__copy_aux(__rb_tree_node<Value>* x,
                                         __rb_tree_node<Value>* p) {
   // structural copy
   link_type r = x;
   while (x != 0) {
      link_type y = __new_node(value(x));
      if (r == x) r = y;  // save for return value
      left(p) = y;
      parent(y) = p;
      color(y) = color(x);
      right(y) = __copy_aux(right(x), y);
      left(y) = 0;
      p = y;
      x = left(x);
   }
   left(p) = 0;
   return r;
}


template <class Value, class Alloc>
inline
void __rb_tree_base<Value, Alloc>::__erase(__rb_tree_node<Value>* x) {
    // erase without rebalancing
    while (x != 0) {
       __erase(right(x));
       link_type y = left(x);
       vcl_destroy(&(value(x)));
       put_node(x);
       x = y;
    }
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
void
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(__iterator__ first,
                                                       __iterator__ last) {
    if (first == begin() && last == end())
        clear();
    else
         while (first != last) erase(first++);
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(const Key* first,
                                                            const Key* last) {
    while (first != last) erase(*first++);
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename __iterator__
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::find(const __key_type__& k) {
   link_type y = header; /* Last node which is not vcl_less than k. */
   link_type x = root(); /* Current node. */

   while (x != 0)
     if (!key_compare(key(x), k))
       y = x, x = left(x);
   else
       x = right(x);

   return make_iterator((y == header || key_compare(k, key(y))) ? header : y);
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename __const_iterator__
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::find(const __key_type__& k) const {
   link_type y = header; /* Last node which is not vcl_less than k. */
   link_type x = root(); /* Current node. */

   while (x != 0) {
     if (!key_compare(key(x), k))
       y = x, x = left(x);
   else
       x = right(x);
   }
   return make_const_iterator((y == header || key_compare(k, key(y))) ? header : y);
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename __size_type__
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::count(const __key_type__& k) const {
    vcl_pair<const_iterator, const_iterator> p = equal_range(k);
    size_type n = 0;
    vcl_distance(p.first, p.second, n);
    return n;
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename __iterator__
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::lower_bound(const __key_type__& k) {
   link_type y = header; /* Last node which is not vcl_less than k. */
   link_type x = root(); /* Current node. */

   while (x != 0)
     if (!key_compare(key(x), k))
       y = x, x = left(x);
     else
       x = right(x);

   return make_iterator(y);
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename __const_iterator__
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::lower_bound(const __key_type__& k) const {
   link_type y = header; /* Last node which is not vcl_less than k. */
   link_type x = root(); /* Current node. */

   while (x != 0)
     if (!key_compare(key(x), k))
       y = x, x = left(x);
     else
       x = right(x);

   return make_const_iterator(y);
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename __iterator__
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::upper_bound(const __key_type__& k) {
  link_type y = header; /* Last node which is vcl_greater than k. */
  link_type x = root(); /* Current node. */

   while (x != 0)
     if (key_compare(k, key(x)))
       y = x, x = left(x);
     else
       x = right(x);

   return make_iterator(y);
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename __const_iterator__
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::upper_bound(const __key_type__& k) const {
  link_type y = header; /* Last node which is vcl_greater than k. */
  link_type x = root(); /* Current node. */

   while (x != 0)
     if (key_compare(k, key(x)))
       y = x, x = left(x);
     else
       x = right(x);

   return make_const_iterator(y);
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline vcl_pair<typename __iterator__,typename __iterator__>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::equal_range(const __key_type__& k) {
    return vcl_pair<iterator, iterator>(lower_bound(k), upper_bound(k));
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline vcl_pair<typename __const_iterator__,typename __const_iterator__>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::equal_range(const __key_type__& k) const {
    return vcl_pair<const_iterator,const_iterator>(lower_bound(k), upper_bound(k));
}

// awf patched
#ifdef __PUT_STATIC_DATA_MEMBERS_HERE
int __black_count(__rb_tree_node_base* node, __rb_tree_node_base* root)
{
  if (node == 0)
    return 0;
  else {
    int bc = node->color == __rb_tree_black ? 1 : 0;
    if (node == root)
      return bc;
    else
      return bc + __black_count(node->parent, root);
  }
}
#else
extern int __black_count(__rb_tree_node_base* node, __rb_tree_node_base* root);
#endif

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
bool
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::__rb_verify() const
{
  int len = __black_count(leftmost(), root());
  for (const_iterator it = begin(); it != end(); ++it) {
    link_type x = (link_type) it.node;
    link_type L = left(x);
    link_type R = right(x);

    if (x->color == __rb_tree_red)
      if ((L && L->color == __rb_tree_red) ||
          (R && R->color == __rb_tree_red))
        return false;

    if (L && key_compare(key(x), key(L)))
      return false;
    if (R && key_compare(key(R), key(x)))
      return false;

    if (!L && !R && __black_count(x, root()) != len)
      return false;
  }

  if ( !empty() )
  {
          if (leftmost() != __rb_tree_node_base::minimum(root()))
                return false;
          if (rightmost() != __rb_tree_node_base::maximum(root()))
                return false;
  }

  return true;
}

# undef __iterator__
# undef __const_iterator__
# undef __size_type__
# undef __link_type__
# undef __base_ptr__
# undef __value_type__
# undef __key_type__

#endif // vcl_emulation_tree_h