/usr/include/ITK-4.5/itkAffineTransform.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkAffineTransform_h
#define __itkAffineTransform_h
#include "itkMatrixOffsetTransformBase.h"
#include <iostream>
namespace itk
{
/**
* Affine transformation of a vector space (e.g. space coordinates)
*
* This class allows the definition and manipulation of affine
* transformations of an n-dimensional affine space (and its
* associated vector space) onto itself. One common use is to define
* and manipulate Euclidean coordinate transformations in two and
* three dimensions, but other uses are possible as well.
*
* An affine transformation is defined mathematically as a linear
* transformation plus a constant offset. If A is a constant n x n
* matrix and b is a constant n-vector, then y = Ax+b defines an
* affine transformation from the n-vector x to the n-vector y.
*
* The difference between two points is a vector and transforms
* linearly, using the matrix only. That is, (y1-y2) = A*(x1-x2).
*
* The AffineTransform class determines whether to transform an object
* as a point or a vector by examining its type. An object of type
* Point transforms as a point; an object of type Vector transforms as
* a vector.
*
* One common use of affine transformations is to define coordinate
* conversions in two- and three-dimensional space. In this
* application, x is a two- or three-dimensional vector containing the
* "source" coordinates of a point, y is a vector containing the
* "target" coordinates, the matrix A defines the scaling and rotation
* of the coordinate systems from the source to the target, and b
* defines the translation of the origin from the source to the
* target. More generally, A can also define anisotropic scaling and
* shearing transformations. Any good textbook on computer graphics
* will discuss coordinate transformations in more detail. Several of
* the methods in this class are designed for this purpose and use the
* language appropriate to coordinate conversions.
*
* Any two affine transformations may be composed and the result is
* another affine transformation. However, the order is important.
* Given two affine transformations T1 and T2, we will say that
* "precomposing T1 with T2" yields the transformation which applies
* T1 to the source, and then applies T2 to that result to obtain the
* target. Conversely, we will say that "postcomposing T1 with T2"
* yields the transformation which applies T2 to the source, and then
* applies T1 to that result to obtain the target. (Whether T1 or T2
* comes first lexicographically depends on whether you choose to
* write mappings from right-to-left or vice versa; we avoid the whole
* problem by referring to the order of application rather than the
* textual order.)
*
* There are two template parameters for this class:
*
* ScalarT The type to be used for scalar numeric values. Either
* float or double.
*
* NDimensions The number of dimensions of the vector space.
*
* This class provides several methods for setting the matrix and vector
* defining the transform. To support the registration framework, the
* transform parameters can also be set as an Array<double> of size
* (NDimension + 1) * NDimension using method SetParameters().
* The first (NDimension x NDimension) parameters defines the matrix in
* row-major order (where the column index varies the fastest).
* The last NDimension parameters defines the translation
* in each dimensions.
*
* This class also supports the specification of a center of rotation (center)
* and a translation that is applied with respect to that centered rotation.
* By default the center of rotation is set to the origin.
*
* \ingroup ITKTransform
*/
template<
typename TScalar = double, // Data type for scalars
// (e.g. float or double)
unsigned int NDimensions = 3 >
// Number of dimensions in the input space
class AffineTransform:
public MatrixOffsetTransformBase< TScalar, NDimensions, NDimensions >
{
public:
/** Standard typedefs */
typedef AffineTransform Self;
typedef MatrixOffsetTransformBase< TScalar,
NDimensions,
NDimensions > Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Run-time type information (and related methods). */
itkTypeMacro(AffineTransform, MatrixOffsetTransformBase);
/** New macro for creation of through a Smart Pointer */
itkNewMacro(Self);
/** Dimension of the domain space. */
itkStaticConstMacro(InputSpaceDimension, unsigned int, NDimensions);
itkStaticConstMacro(OutputSpaceDimension, unsigned int, NDimensions);
itkStaticConstMacro(SpaceDimension, unsigned int, NDimensions);
itkStaticConstMacro( ParametersDimension, unsigned int,
NDimensions *( NDimensions + 1 ) );
/** Parameters Type */
typedef typename Superclass::ParametersType ParametersType;
typedef typename Superclass::JacobianType JacobianType;
typedef typename Superclass::ScalarType ScalarType;
typedef typename Superclass::InputPointType InputPointType;
typedef typename Superclass::OutputPointType OutputPointType;
typedef typename Superclass::InputVectorType InputVectorType;
typedef typename Superclass::OutputVectorType OutputVectorType;
typedef typename Superclass::InputVnlVectorType InputVnlVectorType;
typedef typename Superclass::OutputVnlVectorType OutputVnlVectorType;
typedef typename Superclass::InputCovariantVectorType InputCovariantVectorType;
typedef typename Superclass::OutputCovariantVectorType OutputCovariantVectorType;
typedef typename Superclass::MatrixType MatrixType;
typedef typename Superclass::InverseMatrixType InverseMatrixType;
typedef typename Superclass::CenterType CenterType;
typedef typename Superclass::OffsetType OffsetType;
typedef typename Superclass::TranslationType TranslationType;
/** Base inverse transform type. This type should not be changed to the
* concrete inverse transform type or inheritance would be lost.*/
typedef typename Superclass::InverseTransformBaseType InverseTransformBaseType;
typedef typename InverseTransformBaseType::Pointer InverseTransformBasePointer;
/** Compose affine transformation with a translation
*
* This method modifies self to include a translation of the
* origin. The translation is precomposed with self if pre is
* true, and postcomposed otherwise.
* This updates Translation based on current center. */
void Translate(const OutputVectorType & offset, bool pre = 0);
/** Compose affine transformation with a scaling
*
* This method modifies self to magnify the source by a given
* factor along each axis. If all factors are the same, or only a
* single factor is given, then the scaling is isotropic;
* otherwise it is anisotropic. If an odd number of factors are
* negative, then the parity of the image changes. If any of the
* factors is zero, then the transformation becomes a projection
* and is not invertible. The scaling is precomposed with self if
* pre is true, and postcomposed otherwise.
* Note that the scaling is applied centered at the origin. */
void Scale(const OutputVectorType & factor, bool pre = 0);
void Scale(const TScalar & factor, bool pre = 0);
/** Compose affine transformation with an elementary rotation
*
* This method composes self with a rotation that affects two
* specified axes, replacing the current value of self. The
* rotation angle is in radians. The axis of rotation goes
* through the origin. The transformation is given by
*
* y[axis1] = vcl_cos(angle)*x[axis1] + vcl_sin(angle)*x[axis2]
* y[axis2] = -sin(angle)*x[axis1] + vcl_cos(angle)*x[axis2].
*
* All coordinates other than axis1 and axis2 are unchanged;
* a rotation of pi/2 radians will carry +axis1 into +axis2.
* The rotation is precomposed with self if pre is true, and
* postcomposed otherwise.
* Note that the rotation is applied centered at the origin. */
void Rotate(int axis1, int axis2, TScalar angle, bool pre = 0);
/** Compose 2D affine transformation with a rotation
*
* This method composes self, which must be a 2D affine
* transformation, with a clockwise rotation through a given angle
* in radians. The center of rotation is the origin. The
* rotation is precomposed with self if pre is true, and
* postcomposed otherwise.
* Note that the rotation is applied centered at the origin.
*
* \warning Only to be use in two dimensions
*
* \todo Find a way to generate a compile-time error
* is this is used with NDimensions != 2. */
void Rotate2D(TScalar angle, bool pre = 0);
/** Compose 3D affine transformation with a rotation
*
* This method composes self, which must be a 3D affine
* transformation, with a clockwise rotation around a specified
* axis. The rotation angle is in radians; the axis of rotation
* goes through the origin. The rotation is precomposed with self
* if pre is true, and postcomposed otherwise.
* Note that the rotation is applied centered at the origin.
*
* \warning Only to be used in dimension 3
*
* \todo Find a way to generate a compile-time error
* is this is used with NDimensions != 3. */
void Rotate3D(const OutputVectorType & axis, TScalar angle, bool pre = 0);
/** Compose affine transformation with a shear
*
* This method composes self with a shear transformation,
* replacing the original contents of self. The shear is
* precomposed with self if pre is true, and postcomposed
* otherwise. The transformation is given by
*
* y[axis1] = x[axis1] + coef*x[axis2]
* y[axis2] = x[axis2].
*
* Note that the shear is applied centered at the origin. */
void Shear(int axis1, int axis2, TScalar coef, bool pre = 0);
/** Get an inverse of this transform. */
bool GetInverse(Self *inverse) const;
/** Return an inverse of this transform. */
virtual InverseTransformBasePointer GetInverseTransform() const;
/** Back transform by an affine transformation
*
* This method finds the point or vector that maps to a given
* point or vector under the affine transformation defined by
* self. If no such point exists, an exception is thrown.
*
* \deprecated Please use GetInverseTransform and then call the
* forward transform function */
itkLegacyMacro(InputPointType BackTransform(const OutputPointType & point) const);
itkLegacyMacro(InputVectorType BackTransform(const OutputVectorType & vector) const);
itkLegacyMacro(InputVnlVectorType BackTransform( const OutputVnlVectorType & vector) const);
itkLegacyMacro(InputCovariantVectorType BackTransform( const OutputCovariantVectorType & vector) const);
/** Back transform a point by an affine transform
*
* This method finds the point that maps to a given point under
* the affine transformation defined by self. If no such point
* exists, an exception is thrown. The returned value is (a
* pointer to) a brand new point created with new.
*
* \deprecated Please use GetInverseTransform and then call the
* forward transform function */
itkLegacyMacro(InputPointType BackTransformPoint(const OutputPointType & point) const);
/** Compute distance between two affine transformations
*
* This method computes a ``distance'' between two affine
* transformations. This distance is guaranteed to be a metric,
* but not any particular metric. (At the moment, the algorithm
* is to collect all the elements of the matrix and offset into a
* vector, and compute the euclidean (L2) norm of that vector.
* Some metric which could be used to estimate the distance between
* two points transformed by the affine transformation would be
* more useful, but I don't have time right now to work out the
* mathematical details.) */
ScalarType Metric(const Self *other) const;
/** This method computes the distance from self to the identity
* transformation, using the same metric as the one-argument form
* of the Metric() method. */
ScalarType Metric(void) const;
protected:
/** Construct an AffineTransform object
*
* This method constructs a new AffineTransform object and
* initializes the matrix and offset parts of the transformation
* to values specified by the caller. If the arguments are
* omitted, then the AffineTransform is initialized to an identity
* transformation in the appropriate number of dimensions. */
AffineTransform(const MatrixType & matrix,
const OutputVectorType & offset);
AffineTransform(unsigned int paramDims);
AffineTransform();
/** Destroy an AffineTransform object */
virtual ~AffineTransform();
/** Print contents of an AffineTransform */
void PrintSelf(std::ostream & s, Indent indent) const;
private:
AffineTransform(const Self & other);
const Self & operator=(const Self &);
}; //class AffineTransform
#if !defined(ITK_LEGACY_REMOVE)
/** Back transform a vector */
template< typename TScalar, unsigned int NDimensions >
inline
typename AffineTransform< TScalar, NDimensions >::InputVectorType
AffineTransform< TScalar, NDimensions >::BackTransform(const OutputVectorType & vect) const
{
itkWarningMacro(
<< "BackTransform(): This method is slated to be removed "
<< "from ITK. Instead, please use GetInverse() to generate an inverse "
<< "transform and then perform the transform using that inverted transform.");
return this->GetInverseMatrix() * vect;
}
/** Back transform a vnl_vector */
template< typename TScalar, unsigned int NDimensions >
inline
typename AffineTransform< TScalar, NDimensions >::InputVnlVectorType
AffineTransform< TScalar, NDimensions >::BackTransform(const OutputVnlVectorType & vect) const
{
itkWarningMacro(
<< "BackTransform(): This method is slated to be removed "
<< "from ITK. Instead, please use GetInverse() to generate an inverse "
<< "transform and then perform the transform using that inverted transform.");
return this->GetInverseMatrix() * vect;
}
/** Back Transform a CovariantVector */
template< typename TScalar, unsigned int NDimensions >
inline
typename AffineTransform< TScalar, NDimensions >::InputCovariantVectorType
AffineTransform< TScalar, NDimensions >::BackTransform(const OutputCovariantVectorType & vec) const
{
itkWarningMacro(
<< "BackTransform(): This method is slated to be removed "
<< "from ITK. Instead, please use GetInverse() to generate an inverse "
<< "transform and then perform the transform using that inverted transform.");
InputCovariantVectorType result; // Converted vector
for ( unsigned int i = 0; i < NDimensions; i++ )
{
result[i] = NumericTraits< ScalarType >::Zero;
for ( unsigned int j = 0; j < NDimensions; j++ )
{
result[i] += this->GetMatrix()[j][i] * vec[j]; // Direct matrix transposed
}
}
return result;
}
/** Back transform a given point which is represented as type PointType */
template< typename TScalar, unsigned int NDimensions >
inline
typename AffineTransform< TScalar, NDimensions >::InputPointType
AffineTransform< TScalar, NDimensions >::BackTransformPoint(const OutputPointType & point) const
{
return this->BackTransform(point);
}
/** Back transform a point */
template< typename TScalar, unsigned int NDimensions >
inline
typename AffineTransform< TScalar, NDimensions >::InputPointType
AffineTransform< TScalar, NDimensions >::BackTransform(const OutputPointType & point) const
{
itkWarningMacro(
<< "BackTransform(): This method is slated to be removed "
<< "from ITK. Instead, please use GetInverse() to generate an inverse "
<< "transform and then perform the transform using that inverted transform.");
InputPointType result; // Converted point
ScalarType temp[NDimensions];
unsigned int i, j;
for ( j = 0; j < NDimensions; j++ )
{
temp[j] = point[j] - this->GetOffset()[j];
}
for ( i = 0; i < NDimensions; i++ )
{
result[i] = 0.0;
for ( j = 0; j < NDimensions; j++ )
{
result[i] += this->GetInverseMatrix()[i][j] * temp[j];
}
}
return result;
}
#endif
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkAffineTransform.hxx"
#endif
#endif /* __itkAffineTransform_h */
|