/usr/include/ITK-4.5/itkAffineTransform.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkAffineTransform_hxx
#define __itkAffineTransform_hxx
#include "itkNumericTraits.h"
#include "itkAffineTransform.h"
#include "vnl/algo/vnl_matrix_inverse.h"
namespace itk
{
/** Constructor with default arguments */
template< typename TScalar, unsigned int NDimensions >
AffineTransform< TScalar, NDimensions >::AffineTransform():Superclass(ParametersDimension)
{}
/** Constructor with default arguments */
template< typename TScalar, unsigned int NDimensions >
AffineTransform< TScalar, NDimensions >::AffineTransform(unsigned int parametersDimension):
Superclass(parametersDimension)
{}
/** Constructor with explicit arguments */
template< typename TScalar, unsigned int NDimensions >
AffineTransform< TScalar, NDimensions >::AffineTransform(const MatrixType & matrix,
const OutputVectorType & offset):
Superclass(matrix, offset)
{}
/** Destructor */
template< typename TScalar, unsigned int NDimensions >
AffineTransform< TScalar, NDimensions >::
~AffineTransform()
{
}
/** Print self */
template< typename TScalar, unsigned int NDimensions >
void
AffineTransform< TScalar, NDimensions >::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
}
/** Compose with a translation */
template< typename TScalar, unsigned int NDimensions >
void
AffineTransform< TScalar, NDimensions >::Translate(const OutputVectorType & trans, bool pre)
{
OutputVectorType newTranslation = this->GetTranslation();
if ( pre )
{
newTranslation += this->GetMatrix() * trans;
}
else
{
newTranslation += trans;
}
this->SetVarTranslation(newTranslation);
this->ComputeOffset();
this->Modified();
}
/** Compose with isotropic scaling */
template< typename TScalar, unsigned int NDimensions >
void
AffineTransform< TScalar, NDimensions >
::Scale(const TScalar & factor, bool pre)
{
if ( pre )
{
MatrixType newMatrix = this->GetMatrix();
newMatrix *= factor;
this->SetVarMatrix(newMatrix);
}
else
{
MatrixType newMatrix = this->GetMatrix();
newMatrix *= factor;
this->SetVarMatrix(newMatrix);
OutputVectorType newTranslation = this->GetTranslation();
newTranslation *= factor;
this->SetVarTranslation(newTranslation);
}
this->ComputeMatrixParameters();
this->ComputeOffset();
this->Modified();
}
/** Compose with anisotropic scaling */
template< typename TScalar, unsigned int NDimensions >
void
AffineTransform< TScalar, NDimensions >
::Scale(const OutputVectorType & factor, bool pre)
{
MatrixType trans;
unsigned int i, j;
for ( i = 0; i < NDimensions; i++ )
{
for ( j = 0; j < NDimensions; j++ )
{
trans[i][j] = 0.0;
}
trans[i][i] = factor[i];
}
if ( pre )
{
this->SetVarMatrix(this->GetMatrix() * trans);
}
else
{
this->SetVarMatrix( trans * this->GetMatrix() );
this->SetVarTranslation( trans * this->GetTranslation() );
}
this->ComputeMatrixParameters();
this->ComputeOffset();
this->Modified();
}
/** Compose with elementary rotation */
template< typename TScalar, unsigned int NDimensions >
void
AffineTransform< TScalar, NDimensions >
::Rotate(int axis1, int axis2, TScalar angle, bool pre)
{
MatrixType trans;
unsigned int i, j;
for ( i = 0; i < NDimensions; i++ )
{
for ( j = 0; j < NDimensions; j++ )
{
trans[i][j] = 0.0;
}
trans[i][i] = 1.0;
}
trans[axis1][axis1] = vcl_cos(angle);
trans[axis1][axis2] = vcl_sin(angle);
trans[axis2][axis1] = -vcl_sin(angle);
trans[axis2][axis2] = vcl_cos(angle);
if ( pre )
{
this->SetVarMatrix(this->GetMatrix() * trans);
}
else
{
this->SetVarMatrix( trans * this->GetMatrix() );
this->SetVarTranslation( trans * this->GetTranslation() );
}
this->ComputeMatrixParameters();
this->ComputeOffset();
this->Modified();
}
/** Compose with 2D rotation
* \todo Find a way to generate a compile-time error
* is this is used with NDimensions != 2. */
template< typename TScalar, unsigned int NDimensions >
void
AffineTransform< TScalar, NDimensions >
::Rotate2D(TScalar angle, bool pre)
{
MatrixType trans;
trans[0][0] = vcl_cos(angle);
trans[0][1] = -vcl_sin(angle);
trans[1][0] = vcl_sin(angle);
trans[1][1] = vcl_cos(angle);
if ( pre )
{
this->SetVarMatrix(this->GetMatrix() * trans);
}
else
{
this->SetVarMatrix( trans * this->GetMatrix() );
this->SetVarTranslation( trans * this->GetTranslation() );
}
this->ComputeMatrixParameters();
this->ComputeOffset();
this->Modified();
}
/** Compose with 3D rotation
* \todo Find a way to generate a compile-time error
* is this is used with NDimensions != 3. */
template< typename TScalar, unsigned int NDimensions >
void
AffineTransform< TScalar, NDimensions >
::Rotate3D(const OutputVectorType & axis, TScalar angle, bool pre)
{
MatrixType trans;
ScalarType r, x1, x2, x3;
ScalarType q0, q1, q2, q3;
// Convert the axis to a unit vector
r = vcl_sqrt(axis[0] * axis[0] + axis[1] * axis[1] + axis[2] * axis[2]);
x1 = axis[0] / r;
x2 = axis[1] / r;
x3 = axis[2] / r;
// Compute quaternion elements
q0 = vcl_cos(angle / 2.0);
q1 = x1 * vcl_sin(angle / 2.0);
q2 = x2 * vcl_sin(angle / 2.0);
q3 = x3 * vcl_sin(angle / 2.0);
// Compute elements of the rotation matrix
trans[0][0] = q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3;
trans[0][1] = 2.0 * ( q1 * q2 - q0 * q3 );
trans[0][2] = 2.0 * ( q1 * q3 + q0 * q2 );
trans[1][0] = 2.0 * ( q1 * q2 + q0 * q3 );
trans[1][1] = q0 * q0 + q2 * q2 - q1 * q1 - q3 * q3;
trans[1][2] = 2.0 * ( q2 * q3 - q0 * q1 );
trans[2][0] = 2.0 * ( q1 * q3 - q0 * q2 );
trans[2][1] = 2.0 * ( q2 * q3 + q0 * q1 );
trans[2][2] = q0 * q0 + q3 * q3 - q1 * q1 - q2 * q2;
// Compose rotation matrix with the existing matrix
if ( pre )
{
this->SetVarMatrix(this->GetMatrix() * trans);
}
else
{
this->SetVarMatrix( trans * this->GetMatrix() );
this->SetVarTranslation( trans * this->GetTranslation() );
}
this->ComputeMatrixParameters();
this->ComputeOffset();
this->Modified();
}
/** Compose with elementary rotation */
template< typename TScalar, unsigned int NDimensions >
void
AffineTransform< TScalar, NDimensions >
::Shear(int axis1, int axis2, TScalar coef, bool pre)
{
MatrixType trans;
unsigned int i, j;
for ( i = 0; i < NDimensions; i++ )
{
for ( j = 0; j < NDimensions; j++ )
{
trans[i][j] = 0.0;
}
trans[i][i] = 1.0;
}
trans[axis1][axis2] = coef;
if ( pre )
{
this->SetVarMatrix(this->GetMatrix() * trans);
}
else
{
this->SetVarMatrix( trans * this->GetMatrix() );
this->SetVarTranslation( trans * this->GetTranslation() );
}
this->ComputeMatrixParameters();
this->ComputeOffset();
this->Modified();
}
/** Get an inverse of this transform. */
template< typename TScalar, unsigned int NDimensions >
bool
AffineTransform< TScalar, NDimensions >
::GetInverse(Self *inverse) const
{
return this->Superclass::GetInverse(inverse);
}
/** Return an inverse of this transform. */
template< typename TScalar, unsigned int NDimensions >
typename AffineTransform< TScalar, NDimensions >::InverseTransformBasePointer
AffineTransform< TScalar, NDimensions >
::GetInverseTransform() const
{
Pointer inv = New();
return this->GetInverse(inv) ? inv.GetPointer() : NULL;
}
/** Compute a distance between two affine transforms */
template< typename TScalar, unsigned int NDimensions >
typename AffineTransform< TScalar, NDimensions >::ScalarType
AffineTransform< TScalar, NDimensions >
::Metric(const Self *other) const
{
ScalarType result = 0.0, term;
for ( unsigned int i = 0; i < NDimensions; i++ )
{
for ( unsigned int j = 0; j < NDimensions; j++ )
{
term = this->GetMatrix()[i][j] - other->GetMatrix()[i][j];
result += term * term;
}
term = this->GetOffset()[i] - other->GetOffset()[i];
result += term * term;
}
return vcl_sqrt(result);
}
/** Compute a distance between self and the identity transform */
template< typename TScalar, unsigned int NDimensions >
typename AffineTransform< TScalar, NDimensions >::ScalarType
AffineTransform< TScalar, NDimensions >
::Metric(void) const
{
ScalarType result = 0.0, term;
for ( unsigned int i = 0; i < NDimensions; i++ )
{
for ( unsigned int j = 0; j < NDimensions; j++ )
{
if ( i == j )
{
term = this->GetMatrix()[i][j] - 1.0;
}
else
{
term = this->GetMatrix()[i][j];
}
result += term * term;
}
term = this->GetOffset()[i];
result += term * term;
}
return vcl_sqrt(result);
}
} // namespace
#endif
|