/usr/include/ITK-4.5/itkAmoebaOptimizer.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkAmoebaOptimizer_h
#define __itkAmoebaOptimizer_h
#include "itkSingleValuedNonLinearVnlOptimizer.h"
#include "vnl/algo/vnl_amoeba.h"
namespace itk
{
/** \class AmoebaOptimizer
* \brief Wrap of the vnl_amoeba algorithm
*
* AmoebaOptimizer is a wrapper around the vnl_amoeba algorithm which
* is an implementation of the Nelder-Meade downhill simplex
* problem. For most problems, it is a few times slower than a
* Levenberg-Marquardt algorithm but does not require derivatives of
* its cost function. It works by creating a simplex (n+1 points in
* ND space). The cost function is evaluated at each corner of the
* simplex. The simplex is then modified (by reflecting a corner
* about the opposite edge, by shrinking the entire simplex, by
* contracting one edge of the simplex, or by expanding the simplex)
* in searching for the minimum of the cost function.
*
* The methods AutomaticInitialSimplex() and SetInitialSimplexDelta()
* control whether the optimizer defines the initial simplex
* automatically (by constructing a very small simplex around the
* initial position) or uses a user supplied simplex size.
*
* The method SetOptimizeWithRestarts() indicates that the amoeabe algorithm
* should be rerun after if converges. This heuristic increases the chances
* of escaping from a local optimum. Each time the simplex is initialized with
* the best solution obtained by the previous runs. The edge length is half of
* that from the previous iteration. The heuristic is terminated if the total
* number of iterations is greater-equal than the maximal number of iterations
* (SetMaximumNumberOfIterations) or the difference between the current function
* value and the best function value is less than a threshold
* (SetFunctionConvergenceTolerance) and
* max(|best_parameters_i - current_parameters_i|) is less than a threshold
* (SetParametersConvergenceTolerance).
*
*
* \ingroup Numerics Optimizers
* \ingroup ITKOptimizers
*/
class AmoebaOptimizer:
public SingleValuedNonLinearVnlOptimizer
{
public:
/** Standard "Self" typedef. */
typedef AmoebaOptimizer Self;
typedef SingleValuedNonLinearVnlOptimizer Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
typedef unsigned int NumberOfIterationsType;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(AmoebaOptimizer, SingleValuedNonLinearVnlOptimizer);
/** Parameters type.
* It defines a position in the optimization search space. */
typedef Superclass::ParametersType ParametersType;
/** InternalParameters typedef. */
typedef vnl_vector< double > InternalParametersType;
/** Start optimization with an initial value. */
void StartOptimization(void);
/** Plug in a Cost Function into the optimizer */
virtual void SetCostFunction(SingleValuedCostFunction *costFunction);
/** Set/Get the maximum number of iterations. The optimization algorithm will
* terminate after the maximum number of iterations has been reached.
* The default value is defined as DEFAULT_MAXIMAL_NUMBER_OF_ITERATIONS. */
itkSetMacro( MaximumNumberOfIterations, NumberOfIterationsType );
itkGetConstMacro( MaximumNumberOfIterations, NumberOfIterationsType );
/** Set/Get the mode which determines how the amoeba algorithm
* defines the initial simplex. Default is
* AutomaticInitialSimplexOn. If AutomaticInitialSimplex is on, the
* initial simplex is created with a default size. If
* AutomaticInitialSimplex is off, then InitialSimplexDelta will be
* used to define the initial simplex, setting the ith corner of the
* simplex as [x0[0], x0[1], ..., x0[i]+InitialSimplexDelta[i], ...,
* x0[d-1]]. */
itkSetMacro(AutomaticInitialSimplex, bool);
itkBooleanMacro(AutomaticInitialSimplex);
itkGetConstMacro(AutomaticInitialSimplex, bool);
/** Set/Get the mode that determines if we want to use multiple runs of the
* Amoeba optimizer. If true, then the optimizer is rerun after it converges.
* The additional runs are performed using a simplex initialized with the
* best solution obtained by the previous runs. The edge length is half of
* that from the previous iteration.
*/
itkSetMacro(OptimizeWithRestarts, bool);
itkBooleanMacro(OptimizeWithRestarts);
itkGetConstMacro(OptimizeWithRestarts, bool);
/** Set/Get the deltas that are used to define the initial simplex
* when AutomaticInitialSimplex is off. */
void SetInitialSimplexDelta(ParametersType initialSimplexDelta,
bool automaticInitialSimplex = false);
itkGetConstMacro(InitialSimplexDelta, ParametersType);
/** The optimization algorithm will terminate when the simplex
* diameter and the difference in cost function values at the corners of
* the simplex falls below user specified thresholds. The simplex
* diameter threshold is set via SetParametersConvergenceTolerance().*/
itkSetMacro(ParametersConvergenceTolerance, double);
itkGetConstMacro(ParametersConvergenceTolerance, double);
/** The optimization algorithm will terminate when the simplex
* diameter and the difference in cost function values at the corners of
* the simplex falls below user specified thresholds. The cost function
* convergence threshold is set via SetFunctionConvergenceTolerance().*/
itkSetMacro(FunctionConvergenceTolerance, double);
itkGetConstMacro(FunctionConvergenceTolerance, double);
/** Report the reason for stopping. */
const std::string GetStopConditionDescription() const;
/** Return Current Value */
MeasureType GetValue() const;
/** Method for getting access to the internal optimizer. */
vnl_amoeba * GetOptimizer(void) const;
protected:
AmoebaOptimizer();
virtual ~AmoebaOptimizer();
void PrintSelf(std::ostream & os, Indent indent) const;
typedef Superclass::CostFunctionAdaptorType CostFunctionAdaptorType;
private:
/**Check that the settings are valid. If not throw an exception.*/
void ValidateSettings();
//purposely not implemented
AmoebaOptimizer(const Self &);
//purposely not implemented
void operator=(const Self &);
NumberOfIterationsType m_MaximumNumberOfIterations;
ParametersType::ValueType m_ParametersConvergenceTolerance;
CostFunctionType::MeasureType m_FunctionConvergenceTolerance;
bool m_AutomaticInitialSimplex;
ParametersType m_InitialSimplexDelta;
bool m_OptimizeWithRestarts;
vnl_amoeba * m_VnlOptimizer;
std::ostringstream m_StopConditionDescription;
};
} // end namespace itk
#endif
|