/usr/include/ITK-4.5/itkBSplineSyNImageRegistrationMethod.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkBSplineSyNImageRegistrationMethod_hxx
#define __itkBSplineSyNImageRegistrationMethod_hxx
#include "itkBSplineSyNImageRegistrationMethod.h"
#include "itkBSplineSmoothingOnUpdateDisplacementFieldTransformParametersAdaptor.h"
#include "itkComposeDisplacementFieldsImageFilter.h"
#include "itkImportImageFilter.h"
#include "itkInvertDisplacementFieldImageFilter.h"
#include "itkIterationReporter.h"
#include "itkMultiplyImageFilter.h"
#include "itkWindowConvergenceMonitoringFunction.h"
namespace itk
{
/**
* Constructor
*/
template<typename TFixedImage, typename TMovingImage, typename TOutputTransform>
BSplineSyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform>
::BSplineSyNImageRegistrationMethod()
{
}
template<typename TFixedImage, typename TMovingImage, typename TOutputTransform>
BSplineSyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform>
::~BSplineSyNImageRegistrationMethod()
{
}
template<typename TFixedImage, typename TMovingImage, typename TOutputTransform>
void
BSplineSyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform>
::InitializeRegistrationAtEachLevel( const SizeValueType level )
{
Superclass::InitializeRegistrationAtEachLevel( level );
typedef BSplineSmoothingOnUpdateDisplacementFieldTransformParametersAdaptor<OutputTransformType> BSplineDisplacementFieldTransformAdaptorType;
if( level == 0 )
{
this->m_FixedToMiddleTransform->SetSplineOrder( this->m_OutputTransform->GetSplineOrder() );
this->m_FixedToMiddleTransform->SetNumberOfControlPointsForTheUpdateField(
dynamic_cast<BSplineDisplacementFieldTransformAdaptorType *>( this->m_TransformParametersAdaptorsPerLevel[0].GetPointer() )->GetNumberOfControlPointsForTheUpdateField() );
this->m_FixedToMiddleTransform->SetNumberOfControlPointsForTheTotalField(
dynamic_cast<BSplineDisplacementFieldTransformAdaptorType *>( this->m_TransformParametersAdaptorsPerLevel[0].GetPointer() )->GetNumberOfControlPointsForTheTotalField() );
this->m_MovingToMiddleTransform->SetSplineOrder( this->m_OutputTransform->GetSplineOrder() );
this->m_MovingToMiddleTransform->SetNumberOfControlPointsForTheUpdateField(
dynamic_cast<BSplineDisplacementFieldTransformAdaptorType *>( this->m_TransformParametersAdaptorsPerLevel[0].GetPointer() )->GetNumberOfControlPointsForTheUpdateField() );
this->m_MovingToMiddleTransform->SetNumberOfControlPointsForTheTotalField(
dynamic_cast<BSplineDisplacementFieldTransformAdaptorType *>( this->m_TransformParametersAdaptorsPerLevel[0].GetPointer() )->GetNumberOfControlPointsForTheTotalField() );
}
}
/*
* Start the optimization at each level. We just do a basic gradient descent operation.
*/
template<typename TFixedImage, typename TMovingImage, typename TOutputTransform>
void
BSplineSyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform>
::StartOptimization()
{
const DisplacementVectorType zeroVector( 0.0 );
typedef ImageDuplicator<DisplacementFieldType> DisplacementFieldDuplicatorType;
typename VirtualImageType::ConstPointer virtualDomainImage;
typename MovingImageMaskType::ConstPointer movingImageMask;
typename FixedImageMaskType::ConstPointer fixedImageMask;
typename MultiMetricType::Pointer multiMetric = dynamic_cast<MultiMetricType *>( this->m_Metric.GetPointer() );
if( multiMetric )
{
typename ImageMetricType::Pointer metricQueue = dynamic_cast<ImageMetricType *>( multiMetric->GetMetricQueue()[0].GetPointer() );
if( metricQueue.IsNotNull() )
{
virtualDomainImage = metricQueue->GetVirtualImage();
fixedImageMask = metricQueue->GetFixedImageMask();
movingImageMask = metricQueue->GetMovingImageMask();
}
else
{
itkExceptionMacro("ERROR: Invalid conversion from the multi metric queue.");
}
}
else
{
typename ImageMetricType::Pointer metric = dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() );
if( metric.IsNotNull() )
{
virtualDomainImage = metric->GetVirtualImage();
fixedImageMask = metric->GetFixedImageMask();
movingImageMask = metric->GetMovingImageMask();
}
else
{
itkExceptionMacro("ERROR: Invalid metric conversion.");
}
}
// Monitor the convergence
typedef itk::Function::WindowConvergenceMonitoringFunction<RealType> ConvergenceMonitoringType;
typename ConvergenceMonitoringType::Pointer convergenceMonitoring = ConvergenceMonitoringType::New();
convergenceMonitoring->SetWindowSize( this->m_ConvergenceWindowSize );
typedef IdentityTransform<RealType, ImageDimension> IdentityTransformType;
typename IdentityTransformType::Pointer identityTransform;
identityTransform = IdentityTransformType::New();
IterationReporter reporter( this, 0, 1 );
while( this->m_CurrentIteration++ < this->m_NumberOfIterationsPerLevel[this->m_CurrentLevel] && !this->m_IsConverged )
{
typename CompositeTransformType::Pointer fixedComposite = CompositeTransformType::New();
fixedComposite->AddTransform( this->m_FixedInitialTransform );
fixedComposite->AddTransform( this->m_FixedToMiddleTransform->GetInverseTransform() );
fixedComposite->FlattenTransformQueue();
fixedComposite->SetOnlyMostRecentTransformToOptimizeOn();
typename CompositeTransformType::Pointer movingComposite = CompositeTransformType::New();
movingComposite->AddTransform( this->m_CompositeTransform );
movingComposite->AddTransform( this->m_MovingToMiddleTransform->GetInverseTransform() );
movingComposite->FlattenTransformQueue();
movingComposite->SetOnlyMostRecentTransformToOptimizeOn();
// Compute the update fields (to both moving and fixed images) and smooth
MeasureType fixedMetricValue = 0.0;
MeasureType movingMetricValue = 0.0;
DisplacementFieldPointer fixedToMiddleSmoothUpdateField = this->ComputeUpdateField(
this->m_FixedSmoothImages, fixedComposite, this->m_MovingSmoothImages, movingComposite, fixedImageMask, movingMetricValue );
DisplacementFieldPointer movingToMiddleSmoothUpdateField = this->ComputeUpdateField(
this->m_MovingSmoothImages, movingComposite, this->m_FixedSmoothImages, fixedComposite, movingImageMask, fixedMetricValue );
if ( this->m_AverageMidPointGradients )
{
ImageRegionIteratorWithIndex<DisplacementFieldType> ItF( fixedToMiddleSmoothUpdateField, fixedToMiddleSmoothUpdateField->GetLargestPossibleRegion() );
for( ItF.GoToBegin(); !ItF.IsAtEnd(); ++ItF )
{
ItF.Set( ItF.Get() - movingToMiddleSmoothUpdateField->GetPixel( ItF.GetIndex() ) );
movingToMiddleSmoothUpdateField->SetPixel( ItF.GetIndex(), -ItF.Get() );
}
}
// Add the update field to both displacement fields (from fixed/moving to middle image) and then smooth
typedef ComposeDisplacementFieldsImageFilter<DisplacementFieldType> ComposerType;
typename ComposerType::Pointer fixedComposer = ComposerType::New();
fixedComposer->SetDisplacementField( fixedToMiddleSmoothUpdateField );
fixedComposer->SetWarpingField( this->m_FixedToMiddleTransform->GetDisplacementField() );
fixedComposer->Update();
DisplacementFieldPointer fixedToMiddleSmoothTotalFieldTmp = this->BSplineSmoothDisplacementField( fixedComposer->GetOutput(),
this->m_FixedToMiddleTransform->GetNumberOfControlPointsForTheTotalField(), NULL );
typename ComposerType::Pointer movingComposer = ComposerType::New();
movingComposer->SetDisplacementField( movingToMiddleSmoothUpdateField );
movingComposer->SetWarpingField( this->m_MovingToMiddleTransform->GetDisplacementField() );
movingComposer->Update();
DisplacementFieldPointer movingToMiddleSmoothTotalFieldTmp = this->BSplineSmoothDisplacementField( movingComposer->GetOutput(),
this->m_MovingToMiddleTransform->GetNumberOfControlPointsForTheTotalField(), NULL );
// Iteratively estimate the inverse fields.
DisplacementFieldPointer fixedToMiddleSmoothTotalFieldInverse = this->InvertDisplacementField( fixedToMiddleSmoothTotalFieldTmp, this->m_FixedToMiddleTransform->GetInverseDisplacementField() );
DisplacementFieldPointer fixedToMiddleSmoothTotalField = this->InvertDisplacementField( fixedToMiddleSmoothTotalFieldInverse, fixedToMiddleSmoothTotalFieldTmp );
DisplacementFieldPointer movingToMiddleSmoothTotalFieldInverse = this->InvertDisplacementField( movingToMiddleSmoothTotalFieldTmp, this->m_MovingToMiddleTransform->GetInverseDisplacementField() );
DisplacementFieldPointer movingToMiddleSmoothTotalField = this->InvertDisplacementField( movingToMiddleSmoothTotalFieldInverse, movingToMiddleSmoothTotalFieldTmp );
// Assign the displacement fields and their inverses to the proper transforms.
this->m_FixedToMiddleTransform->SetDisplacementField( fixedToMiddleSmoothTotalField );
this->m_FixedToMiddleTransform->SetInverseDisplacementField( fixedToMiddleSmoothTotalFieldInverse );
this->m_MovingToMiddleTransform->SetDisplacementField( movingToMiddleSmoothTotalField );
this->m_MovingToMiddleTransform->SetInverseDisplacementField( movingToMiddleSmoothTotalFieldInverse );
this->m_CurrentMetricValue = 0.5 * ( movingMetricValue + fixedMetricValue );
convergenceMonitoring->AddEnergyValue( this->m_CurrentMetricValue );
this->m_CurrentConvergenceValue = convergenceMonitoring->GetConvergenceValue();
if( this->m_CurrentConvergenceValue < this->m_ConvergenceThreshold )
{
this->m_IsConverged = true;
}
reporter.CompletedStep();
}
}
template<typename TFixedImage, typename TMovingImage, typename TOutputTransform>
typename BSplineSyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform>::DisplacementFieldPointer
BSplineSyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform>
::ComputeUpdateField( const FixedImagesContainerType fixedImages, const TransformBaseType * fixedTransform, const MovingImagesContainerType movingImages,
const TransformBaseType * movingTransform, const FixedImageMaskType * mask, MeasureType & value )
{
// pre calculate the voxel distance to be used in properly scaling the gradient.
typename VirtualImageType::ConstPointer virtualDomainImage;
typename MultiMetricType::Pointer multiMetric = dynamic_cast<MultiMetricType *>( this->m_Metric.GetPointer() );
if( multiMetric )
{
virtualDomainImage = dynamic_cast<ImageMetricType *>( multiMetric->GetMetricQueue()[0].GetPointer() )->GetVirtualImage();
}
else
{
virtualDomainImage = dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() )->GetVirtualImage();
}
if( !this->m_DownsampleImagesForMetricDerivatives )
{
if( multiMetric )
{
for( unsigned int n = 0; n < multiMetric->GetNumberOfMetrics(); n++ )
{
typename ImageMetricType::Pointer metricQueue = dynamic_cast<ImageMetricType *>( multiMetric->GetMetricQueue()[n].GetPointer() );
if( metricQueue.IsNotNull() )
{
metricQueue->SetFixedImage( fixedImages[n] );
metricQueue->SetMovingImage( movingImages[n] );
}
else
{
itkExceptionMacro("ERROR: Invalid conversion from the multi metric queue.");
}
}
multiMetric->SetFixedTransform( const_cast<TransformBaseType *>( fixedTransform ) );
multiMetric->SetMovingTransform( const_cast<TransformBaseType *>( movingTransform ) );
}
else
{
typename ImageMetricType::Pointer metric = dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() );
if( metric.IsNotNull() )
{
metric->SetFixedImage( fixedImages[0] );
metric->SetFixedTransform( const_cast<TransformBaseType *>( fixedTransform ) );
metric->SetMovingImage( movingImages[0] );
metric->SetMovingTransform( const_cast<TransformBaseType *>( movingTransform ) );
}
else
{
itkExceptionMacro("ERROR: Invalid metric conversion.");
}
}
}
else
{
for( unsigned int n = 0; n < this->m_MovingSmoothImages.size(); n++ )
{
typedef ResampleImageFilter<MovingImageType, MovingImageType, typename TOutputTransform::ScalarType> MovingResamplerType;
typename MovingResamplerType::Pointer movingResampler = MovingResamplerType::New();
movingResampler->SetTransform( movingTransform );
movingResampler->SetInput( movingImages[n] );
movingResampler->SetSize( virtualDomainImage->GetRequestedRegion().GetSize() );
movingResampler->SetOutputOrigin( virtualDomainImage->GetOrigin() );
movingResampler->SetOutputSpacing( virtualDomainImage->GetSpacing() );
movingResampler->SetOutputDirection( virtualDomainImage->GetDirection() );
movingResampler->SetDefaultPixelValue( 0 );
movingResampler->Update();
typedef ResampleImageFilter<FixedImageType, FixedImageType, typename TOutputTransform::ScalarType> FixedResamplerType;
typename FixedResamplerType::Pointer fixedResampler = FixedResamplerType::New();
fixedResampler->SetTransform( fixedTransform );
fixedResampler->SetInput( fixedImages[n] );
fixedResampler->SetSize( virtualDomainImage->GetRequestedRegion().GetSize() );
fixedResampler->SetOutputOrigin( virtualDomainImage->GetOrigin() );
fixedResampler->SetOutputSpacing( virtualDomainImage->GetSpacing() );
fixedResampler->SetOutputDirection( virtualDomainImage->GetDirection() );
fixedResampler->SetDefaultPixelValue( 0 );
fixedResampler->Update();
if( multiMetric )
{
typename ImageMetricType::Pointer metricQueue = dynamic_cast<ImageMetricType *>( multiMetric->GetMetricQueue()[n].GetPointer() );
if( metricQueue.IsNotNull() )
{
metricQueue->SetMovingImage( movingResampler->GetOutput() );
metricQueue->SetFixedImage( fixedResampler->GetOutput() );
}
else
{
itkExceptionMacro("ERROR: Invalid conversion from the multi metric queue.");
}
}
else
{
typename ImageMetricType::Pointer metric = dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() );
if( metric.IsNotNull() )
{
metric->SetMovingImage( movingResampler->GetOutput() );
metric->SetFixedImage( fixedResampler->GetOutput() );
}
else
{
itkExceptionMacro("ERROR: Invalid metric conversion.");
}
}
}
const DisplacementVectorType zeroVector( 0.0 );
typename DisplacementFieldType::Pointer identityField = DisplacementFieldType::New();
identityField->CopyInformation( virtualDomainImage );
identityField->SetRegions( virtualDomainImage->GetRequestedRegion() );
identityField->Allocate();
identityField->FillBuffer( zeroVector );
typedef DisplacementFieldTransform<RealType, ImageDimension> DisplacementFieldTransformType;
typename DisplacementFieldTransformType::Pointer identityDisplacementFieldTransform = DisplacementFieldTransformType::New();
identityDisplacementFieldTransform->SetDisplacementField( identityField );
if( multiMetric )
{
multiMetric->SetFixedTransform( identityDisplacementFieldTransform );
multiMetric->SetMovingTransform( identityDisplacementFieldTransform );
}
else
{
dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() )->SetFixedTransform( identityDisplacementFieldTransform );
dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() )->SetMovingTransform( identityDisplacementFieldTransform );
}
}
this->m_Metric->Initialize();
typedef typename ImageMetricType::DerivativeType MetricDerivativeType;
const typename MetricDerivativeType::SizeValueType metricDerivativeSize = virtualDomainImage->GetLargestPossibleRegion().GetNumberOfPixels() * ImageDimension;
MetricDerivativeType metricDerivative( metricDerivativeSize );
metricDerivative.Fill( NumericTraits<typename MetricDerivativeType::ValueType>::Zero );
this->m_Metric->GetValueAndDerivative( value, metricDerivative );
// Ensure that the size of the optimizer weights is the same as the
// number of local transform parameters (=ImageDimension)
if( !this->m_OptimizerWeightsAreIdentity && this->m_OptimizerWeights.Size() == ImageDimension )
{
typename MetricDerivativeType::iterator it;
for( it = metricDerivative.begin(); it != metricDerivative.end(); it += ImageDimension )
{
for( unsigned int d = 0; d < ImageDimension; d++ )
{
*(it + d) *= this->m_OptimizerWeights[d];
}
}
}
// we rescale the update velocity field at each time point.
// we first need to convert to a displacement field to look
// at the max norm of the field.
const SizeValueType numberOfPixels = static_cast<SizeValueType>( metricDerivative.Size() / ImageDimension );
const bool importFilterWillReleaseMemory = false;
// Brad L. says I should feel bad about using a reinterpret_cast. I do feel bad.
DisplacementVectorType *metricDerivativeFieldPointer = reinterpret_cast<DisplacementVectorType *>( metricDerivative.data_block() );
typedef ImportImageFilter<DisplacementVectorType, ImageDimension> ImporterType;
typename ImporterType::Pointer importer = ImporterType::New();
importer->SetImportPointer( metricDerivativeFieldPointer, numberOfPixels, importFilterWillReleaseMemory );
importer->SetRegion( virtualDomainImage->GetBufferedRegion() );
importer->SetOrigin( virtualDomainImage->GetOrigin() );
importer->SetSpacing( virtualDomainImage->GetSpacing() );
importer->SetDirection( virtualDomainImage->GetDirection() );
importer->Update();
typename WeightedMaskImageType::Pointer weightedMask = NULL;
if( mask )
{
// Before using virtualDomainImage as the reference image, it should be cast to the WeightedMaskImageType that always has a type of double.
typedef itk::CastImageFilter<VirtualImageType, WeightedMaskImageType> CastFilterType;
typename CastFilterType::Pointer castfilter = CastFilterType::New();
castfilter->SetInput(virtualDomainImage);
castfilter->Update();
typedef ResampleImageFilter<MaskImageType, WeightedMaskImageType, typename TOutputTransform::ScalarType> MaskResamplerType;
typename MaskResamplerType::Pointer maskResampler = MaskResamplerType::New();
maskResampler->SetTransform( fixedTransform );
maskResampler->SetInput( dynamic_cast<ImageMaskSpatialObjectType *>( const_cast<FixedImageMaskType *>( mask ) )->GetImage() );
maskResampler->UseReferenceImageOn();
maskResampler->SetReferenceImage( castfilter->GetOutput() );
maskResampler->SetSize( virtualDomainImage->GetBufferedRegion().GetSize() );
maskResampler->SetDefaultPixelValue( 0 );
weightedMask = maskResampler->GetOutput();
weightedMask->Update();
weightedMask->DisconnectPipeline();
}
DisplacementFieldPointer updateField = this->BSplineSmoothDisplacementField( importer->GetOutput(),
this->m_FixedToMiddleTransform->GetNumberOfControlPointsForTheUpdateField(), weightedMask );
typename DisplacementFieldType::SpacingType spacing = updateField->GetSpacing();
ImageRegionConstIterator<DisplacementFieldType> ItF( updateField, updateField->GetLargestPossibleRegion() );
RealType maxNorm = NumericTraits<RealType>::NonpositiveMin();
for( ItF.GoToBegin(); !ItF.IsAtEnd(); ++ItF )
{
DisplacementVectorType vector = ItF.Get();
RealType localNorm = 0;
for( unsigned int d = 0; d < ImageDimension; d++ )
{
localNorm += vnl_math_sqr( vector[d] / spacing[d] );
}
localNorm = vcl_sqrt( localNorm );
if( localNorm > maxNorm )
{
maxNorm = localNorm;
}
}
RealType scale = this->m_LearningRate / maxNorm;
typedef Image<RealType, ImageDimension> RealImageType;
typedef MultiplyImageFilter<DisplacementFieldType, RealImageType, DisplacementFieldType> MultiplierType;
typename MultiplierType::Pointer multiplier = MultiplierType::New();
multiplier->SetInput( updateField );
multiplier->SetConstant( scale );
typename DisplacementFieldType::Pointer scaledUpdateField = multiplier->GetOutput();
scaledUpdateField->Update();
scaledUpdateField->DisconnectPipeline();
return scaledUpdateField;
}
template<typename TFixedImage, typename TMovingImage, typename TOutputTransform>
typename BSplineSyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform>::DisplacementFieldPointer
BSplineSyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform>
::BSplineSmoothDisplacementField( const DisplacementFieldType * field, const ArrayType & numberOfControlPoints, const WeightedMaskImageType * mask )
{
typedef ImageDuplicator<DisplacementFieldType> DuplicatorType;
typename DuplicatorType::Pointer duplicator = DuplicatorType::New();
duplicator->SetInputImage( field );
duplicator->Update();
DisplacementFieldPointer smoothField = duplicator->GetModifiableOutput();
for( unsigned int d = 0; d < numberOfControlPoints.Size(); d++ )
{
if( numberOfControlPoints[d] <= 0 )
{
return smoothField;
}
}
typename BSplineFilterType::Pointer bspliner = BSplineFilterType::New();
bspliner->SetDisplacementField( field );
if( mask )
{
bspliner->SetConfidenceImage( mask );
}
bspliner->SetNumberOfControlPoints( numberOfControlPoints );
bspliner->SetSplineOrder( this->m_FixedToMiddleTransform->GetSplineOrder() );
bspliner->SetNumberOfFittingLevels( 1 );
bspliner->SetEnforceStationaryBoundary( true );
bspliner->SetEstimateInverse( false );
bspliner->Update();
smoothField = bspliner->GetOutput();
return smoothField;
}
} // end namespace itk
#endif
|