This file is indexed.

/usr/include/ITK-4.5/itkBSplineSyNImageRegistrationMethod.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkBSplineSyNImageRegistrationMethod_hxx
#define __itkBSplineSyNImageRegistrationMethod_hxx

#include "itkBSplineSyNImageRegistrationMethod.h"

#include "itkBSplineSmoothingOnUpdateDisplacementFieldTransformParametersAdaptor.h"
#include "itkComposeDisplacementFieldsImageFilter.h"
#include "itkImportImageFilter.h"
#include "itkInvertDisplacementFieldImageFilter.h"
#include "itkIterationReporter.h"
#include "itkMultiplyImageFilter.h"
#include "itkWindowConvergenceMonitoringFunction.h"

namespace itk
{
/**
 * Constructor
 */
template<typename TFixedImage, typename TMovingImage, typename TOutputTransform>
BSplineSyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform>
::BSplineSyNImageRegistrationMethod()
{
}

template<typename TFixedImage, typename TMovingImage, typename TOutputTransform>
BSplineSyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform>
::~BSplineSyNImageRegistrationMethod()
{
}

template<typename TFixedImage, typename TMovingImage, typename TOutputTransform>
void
BSplineSyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform>
::InitializeRegistrationAtEachLevel( const SizeValueType level )
{
  Superclass::InitializeRegistrationAtEachLevel( level );

  typedef BSplineSmoothingOnUpdateDisplacementFieldTransformParametersAdaptor<OutputTransformType> BSplineDisplacementFieldTransformAdaptorType;

  if( level == 0 )
    {
    this->m_FixedToMiddleTransform->SetSplineOrder( this->m_OutputTransform->GetSplineOrder() );
    this->m_FixedToMiddleTransform->SetNumberOfControlPointsForTheUpdateField(
      dynamic_cast<BSplineDisplacementFieldTransformAdaptorType *>( this->m_TransformParametersAdaptorsPerLevel[0].GetPointer() )->GetNumberOfControlPointsForTheUpdateField() );
    this->m_FixedToMiddleTransform->SetNumberOfControlPointsForTheTotalField(
      dynamic_cast<BSplineDisplacementFieldTransformAdaptorType *>( this->m_TransformParametersAdaptorsPerLevel[0].GetPointer() )->GetNumberOfControlPointsForTheTotalField() );

    this->m_MovingToMiddleTransform->SetSplineOrder( this->m_OutputTransform->GetSplineOrder() );
    this->m_MovingToMiddleTransform->SetNumberOfControlPointsForTheUpdateField(
      dynamic_cast<BSplineDisplacementFieldTransformAdaptorType *>( this->m_TransformParametersAdaptorsPerLevel[0].GetPointer() )->GetNumberOfControlPointsForTheUpdateField() );
    this->m_MovingToMiddleTransform->SetNumberOfControlPointsForTheTotalField(
      dynamic_cast<BSplineDisplacementFieldTransformAdaptorType *>( this->m_TransformParametersAdaptorsPerLevel[0].GetPointer() )->GetNumberOfControlPointsForTheTotalField() );
    }
}

/*
 * Start the optimization at each level.  We just do a basic gradient descent operation.
 */
template<typename TFixedImage, typename TMovingImage, typename TOutputTransform>
void
BSplineSyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform>
::StartOptimization()
{
  const DisplacementVectorType zeroVector( 0.0 );
  typedef ImageDuplicator<DisplacementFieldType> DisplacementFieldDuplicatorType;

  typename VirtualImageType::ConstPointer virtualDomainImage;
  typename MovingImageMaskType::ConstPointer movingImageMask;
  typename FixedImageMaskType::ConstPointer fixedImageMask;

  typename MultiMetricType::Pointer multiMetric = dynamic_cast<MultiMetricType *>( this->m_Metric.GetPointer() );
  if( multiMetric )
    {
    typename ImageMetricType::Pointer metricQueue = dynamic_cast<ImageMetricType *>( multiMetric->GetMetricQueue()[0].GetPointer() );
    if( metricQueue.IsNotNull() )
      {
      virtualDomainImage = metricQueue->GetVirtualImage();
      fixedImageMask = metricQueue->GetFixedImageMask();
      movingImageMask = metricQueue->GetMovingImageMask();
      }
    else
      {
      itkExceptionMacro("ERROR: Invalid conversion from the multi metric queue.");
      }
    }
  else
    {
    typename ImageMetricType::Pointer metric = dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() );
    if( metric.IsNotNull() )
      {
      virtualDomainImage = metric->GetVirtualImage();
      fixedImageMask = metric->GetFixedImageMask();
      movingImageMask = metric->GetMovingImageMask();
      }
    else
      {
      itkExceptionMacro("ERROR: Invalid metric conversion.");
      }
    }

  // Monitor the convergence
  typedef itk::Function::WindowConvergenceMonitoringFunction<RealType> ConvergenceMonitoringType;
  typename ConvergenceMonitoringType::Pointer convergenceMonitoring = ConvergenceMonitoringType::New();
  convergenceMonitoring->SetWindowSize( this->m_ConvergenceWindowSize );

  typedef IdentityTransform<RealType, ImageDimension> IdentityTransformType;
  typename IdentityTransformType::Pointer identityTransform;
  identityTransform = IdentityTransformType::New();

  IterationReporter reporter( this, 0, 1 );

  while( this->m_CurrentIteration++ < this->m_NumberOfIterationsPerLevel[this->m_CurrentLevel] && !this->m_IsConverged )
    {
    typename CompositeTransformType::Pointer fixedComposite = CompositeTransformType::New();
    fixedComposite->AddTransform( this->m_FixedInitialTransform );
    fixedComposite->AddTransform( this->m_FixedToMiddleTransform->GetInverseTransform() );
    fixedComposite->FlattenTransformQueue();
    fixedComposite->SetOnlyMostRecentTransformToOptimizeOn();

    typename CompositeTransformType::Pointer movingComposite = CompositeTransformType::New();
    movingComposite->AddTransform( this->m_CompositeTransform );
    movingComposite->AddTransform( this->m_MovingToMiddleTransform->GetInverseTransform() );
    movingComposite->FlattenTransformQueue();
    movingComposite->SetOnlyMostRecentTransformToOptimizeOn();

    // Compute the update fields (to both moving and fixed images) and smooth

    MeasureType fixedMetricValue = 0.0;
    MeasureType movingMetricValue = 0.0;

    DisplacementFieldPointer fixedToMiddleSmoothUpdateField = this->ComputeUpdateField(
      this->m_FixedSmoothImages, fixedComposite, this->m_MovingSmoothImages, movingComposite, fixedImageMask, movingMetricValue );
    DisplacementFieldPointer movingToMiddleSmoothUpdateField = this->ComputeUpdateField(
      this->m_MovingSmoothImages, movingComposite, this->m_FixedSmoothImages, fixedComposite, movingImageMask, fixedMetricValue );

    if ( this->m_AverageMidPointGradients )
      {
      ImageRegionIteratorWithIndex<DisplacementFieldType> ItF( fixedToMiddleSmoothUpdateField, fixedToMiddleSmoothUpdateField->GetLargestPossibleRegion() );
      for( ItF.GoToBegin(); !ItF.IsAtEnd(); ++ItF )
        {
        ItF.Set( ItF.Get() - movingToMiddleSmoothUpdateField->GetPixel( ItF.GetIndex() ) );
        movingToMiddleSmoothUpdateField->SetPixel( ItF.GetIndex(), -ItF.Get() );
        }
      }

    // Add the update field to both displacement fields (from fixed/moving to middle image) and then smooth

    typedef ComposeDisplacementFieldsImageFilter<DisplacementFieldType> ComposerType;

    typename ComposerType::Pointer fixedComposer = ComposerType::New();
    fixedComposer->SetDisplacementField( fixedToMiddleSmoothUpdateField );
    fixedComposer->SetWarpingField( this->m_FixedToMiddleTransform->GetDisplacementField() );
    fixedComposer->Update();

    DisplacementFieldPointer fixedToMiddleSmoothTotalFieldTmp = this->BSplineSmoothDisplacementField( fixedComposer->GetOutput(),
      this->m_FixedToMiddleTransform->GetNumberOfControlPointsForTheTotalField(), NULL );

    typename ComposerType::Pointer movingComposer = ComposerType::New();
    movingComposer->SetDisplacementField( movingToMiddleSmoothUpdateField );
    movingComposer->SetWarpingField( this->m_MovingToMiddleTransform->GetDisplacementField() );
    movingComposer->Update();

    DisplacementFieldPointer movingToMiddleSmoothTotalFieldTmp = this->BSplineSmoothDisplacementField( movingComposer->GetOutput(),
      this->m_MovingToMiddleTransform->GetNumberOfControlPointsForTheTotalField(), NULL );

    // Iteratively estimate the inverse fields.

    DisplacementFieldPointer fixedToMiddleSmoothTotalFieldInverse = this->InvertDisplacementField( fixedToMiddleSmoothTotalFieldTmp, this->m_FixedToMiddleTransform->GetInverseDisplacementField() );
    DisplacementFieldPointer fixedToMiddleSmoothTotalField = this->InvertDisplacementField( fixedToMiddleSmoothTotalFieldInverse, fixedToMiddleSmoothTotalFieldTmp );

    DisplacementFieldPointer movingToMiddleSmoothTotalFieldInverse = this->InvertDisplacementField( movingToMiddleSmoothTotalFieldTmp, this->m_MovingToMiddleTransform->GetInverseDisplacementField() );
    DisplacementFieldPointer movingToMiddleSmoothTotalField = this->InvertDisplacementField( movingToMiddleSmoothTotalFieldInverse, movingToMiddleSmoothTotalFieldTmp );

    // Assign the displacement fields and their inverses to the proper transforms.
    this->m_FixedToMiddleTransform->SetDisplacementField( fixedToMiddleSmoothTotalField );
    this->m_FixedToMiddleTransform->SetInverseDisplacementField( fixedToMiddleSmoothTotalFieldInverse );

    this->m_MovingToMiddleTransform->SetDisplacementField( movingToMiddleSmoothTotalField );
    this->m_MovingToMiddleTransform->SetInverseDisplacementField( movingToMiddleSmoothTotalFieldInverse );

    this->m_CurrentMetricValue = 0.5 * ( movingMetricValue + fixedMetricValue );

    convergenceMonitoring->AddEnergyValue( this->m_CurrentMetricValue );
    this->m_CurrentConvergenceValue = convergenceMonitoring->GetConvergenceValue();

    if( this->m_CurrentConvergenceValue < this->m_ConvergenceThreshold )
      {
      this->m_IsConverged = true;
      }
    reporter.CompletedStep();
    }
}

template<typename TFixedImage, typename TMovingImage, typename TOutputTransform>
typename BSplineSyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform>::DisplacementFieldPointer
BSplineSyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform>
::ComputeUpdateField( const FixedImagesContainerType fixedImages, const TransformBaseType * fixedTransform, const MovingImagesContainerType movingImages,
  const TransformBaseType * movingTransform, const FixedImageMaskType * mask, MeasureType & value )
{
  // pre calculate the voxel distance to be used in properly scaling the gradient.

  typename VirtualImageType::ConstPointer virtualDomainImage;
  typename MultiMetricType::Pointer multiMetric = dynamic_cast<MultiMetricType *>( this->m_Metric.GetPointer() );
  if( multiMetric )
    {
    virtualDomainImage = dynamic_cast<ImageMetricType *>( multiMetric->GetMetricQueue()[0].GetPointer() )->GetVirtualImage();
    }
  else
    {
    virtualDomainImage = dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() )->GetVirtualImage();
    }

  if( !this->m_DownsampleImagesForMetricDerivatives )
    {
    if( multiMetric )
      {
      for( unsigned int n = 0; n < multiMetric->GetNumberOfMetrics(); n++ )
        {
        typename ImageMetricType::Pointer metricQueue = dynamic_cast<ImageMetricType *>( multiMetric->GetMetricQueue()[n].GetPointer() );
        if( metricQueue.IsNotNull() )
          {
          metricQueue->SetFixedImage( fixedImages[n] );
          metricQueue->SetMovingImage( movingImages[n] );
          }
        else
          {
          itkExceptionMacro("ERROR: Invalid conversion from the multi metric queue.");
          }
        }
      multiMetric->SetFixedTransform( const_cast<TransformBaseType *>( fixedTransform ) );
      multiMetric->SetMovingTransform( const_cast<TransformBaseType *>( movingTransform ) );
      }
    else
      {
      typename ImageMetricType::Pointer metric = dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() );
      if( metric.IsNotNull() )
        {
        metric->SetFixedImage( fixedImages[0] );
        metric->SetFixedTransform( const_cast<TransformBaseType *>( fixedTransform ) );
        metric->SetMovingImage( movingImages[0] );
        metric->SetMovingTransform( const_cast<TransformBaseType *>( movingTransform ) );
        }
      else
        {
        itkExceptionMacro("ERROR: Invalid metric conversion.");
        }
      }
    }
  else
    {
    for( unsigned int n = 0; n < this->m_MovingSmoothImages.size(); n++ )
      {
      typedef ResampleImageFilter<MovingImageType, MovingImageType, typename TOutputTransform::ScalarType> MovingResamplerType;
      typename MovingResamplerType::Pointer movingResampler = MovingResamplerType::New();
      movingResampler->SetTransform( movingTransform );
      movingResampler->SetInput( movingImages[n] );
      movingResampler->SetSize( virtualDomainImage->GetRequestedRegion().GetSize() );
      movingResampler->SetOutputOrigin( virtualDomainImage->GetOrigin() );
      movingResampler->SetOutputSpacing( virtualDomainImage->GetSpacing() );
      movingResampler->SetOutputDirection( virtualDomainImage->GetDirection() );
      movingResampler->SetDefaultPixelValue( 0 );
      movingResampler->Update();

      typedef ResampleImageFilter<FixedImageType, FixedImageType, typename TOutputTransform::ScalarType> FixedResamplerType;
      typename FixedResamplerType::Pointer fixedResampler = FixedResamplerType::New();
      fixedResampler->SetTransform( fixedTransform );
      fixedResampler->SetInput( fixedImages[n] );
      fixedResampler->SetSize( virtualDomainImage->GetRequestedRegion().GetSize() );
      fixedResampler->SetOutputOrigin( virtualDomainImage->GetOrigin() );
      fixedResampler->SetOutputSpacing( virtualDomainImage->GetSpacing() );
      fixedResampler->SetOutputDirection( virtualDomainImage->GetDirection() );
      fixedResampler->SetDefaultPixelValue( 0 );
      fixedResampler->Update();

      if( multiMetric )
        {
        typename ImageMetricType::Pointer metricQueue = dynamic_cast<ImageMetricType *>( multiMetric->GetMetricQueue()[n].GetPointer() );
        if( metricQueue.IsNotNull() )
          {
          metricQueue->SetMovingImage( movingResampler->GetOutput() );
          metricQueue->SetFixedImage( fixedResampler->GetOutput() );
          }
        else
          {
          itkExceptionMacro("ERROR: Invalid conversion from the multi metric queue.");
          }
        }
      else
        {
        typename ImageMetricType::Pointer metric = dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() );
        if( metric.IsNotNull() )
          {
          metric->SetMovingImage( movingResampler->GetOutput() );
          metric->SetFixedImage( fixedResampler->GetOutput() );
          }
        else
          {
          itkExceptionMacro("ERROR: Invalid metric conversion.");
          }
        }
      }

    const DisplacementVectorType zeroVector( 0.0 );

    typename DisplacementFieldType::Pointer identityField = DisplacementFieldType::New();
    identityField->CopyInformation( virtualDomainImage );
    identityField->SetRegions( virtualDomainImage->GetRequestedRegion() );
    identityField->Allocate();
    identityField->FillBuffer( zeroVector );

    typedef DisplacementFieldTransform<RealType, ImageDimension> DisplacementFieldTransformType;
    typename DisplacementFieldTransformType::Pointer identityDisplacementFieldTransform = DisplacementFieldTransformType::New();
    identityDisplacementFieldTransform->SetDisplacementField( identityField );

    if( multiMetric )
      {
      multiMetric->SetFixedTransform( identityDisplacementFieldTransform );
      multiMetric->SetMovingTransform( identityDisplacementFieldTransform );
      }
    else
      {
      dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() )->SetFixedTransform( identityDisplacementFieldTransform );
      dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() )->SetMovingTransform( identityDisplacementFieldTransform );
      }
    }
  this->m_Metric->Initialize();

  typedef typename ImageMetricType::DerivativeType MetricDerivativeType;
  const typename MetricDerivativeType::SizeValueType metricDerivativeSize = virtualDomainImage->GetLargestPossibleRegion().GetNumberOfPixels() * ImageDimension;
  MetricDerivativeType metricDerivative( metricDerivativeSize );

  metricDerivative.Fill( NumericTraits<typename MetricDerivativeType::ValueType>::Zero );
  this->m_Metric->GetValueAndDerivative( value, metricDerivative );

  // Ensure that the size of the optimizer weights is the same as the
  // number of local transform parameters (=ImageDimension)

  if( !this->m_OptimizerWeightsAreIdentity && this->m_OptimizerWeights.Size() == ImageDimension )
    {
    typename MetricDerivativeType::iterator it;
    for( it = metricDerivative.begin(); it != metricDerivative.end(); it += ImageDimension )
      {
      for( unsigned int d = 0; d < ImageDimension; d++ )
        {
        *(it + d) *= this->m_OptimizerWeights[d];
        }
      }
    }

  // we rescale the update velocity field at each time point.
  // we first need to convert to a displacement field to look
  // at the max norm of the field.

  const SizeValueType numberOfPixels = static_cast<SizeValueType>( metricDerivative.Size() / ImageDimension );
  const bool importFilterWillReleaseMemory = false;

  // Brad L. says I should feel bad about using a reinterpret_cast.  I do feel bad.

  DisplacementVectorType *metricDerivativeFieldPointer = reinterpret_cast<DisplacementVectorType *>( metricDerivative.data_block() );

  typedef ImportImageFilter<DisplacementVectorType, ImageDimension> ImporterType;
  typename ImporterType::Pointer importer = ImporterType::New();
  importer->SetImportPointer( metricDerivativeFieldPointer, numberOfPixels, importFilterWillReleaseMemory );
  importer->SetRegion( virtualDomainImage->GetBufferedRegion() );
  importer->SetOrigin( virtualDomainImage->GetOrigin() );
  importer->SetSpacing( virtualDomainImage->GetSpacing() );
  importer->SetDirection( virtualDomainImage->GetDirection() );
  importer->Update();

  typename WeightedMaskImageType::Pointer weightedMask = NULL;

  if( mask )
    {
      // Before using virtualDomainImage as the reference image, it should be cast to the WeightedMaskImageType that always has a type of double.
    typedef itk::CastImageFilter<VirtualImageType, WeightedMaskImageType> CastFilterType;
    typename CastFilterType::Pointer castfilter = CastFilterType::New();
    castfilter->SetInput(virtualDomainImage);
    castfilter->Update();

    typedef ResampleImageFilter<MaskImageType, WeightedMaskImageType, typename TOutputTransform::ScalarType> MaskResamplerType;
    typename MaskResamplerType::Pointer maskResampler = MaskResamplerType::New();
    maskResampler->SetTransform( fixedTransform );
    maskResampler->SetInput( dynamic_cast<ImageMaskSpatialObjectType *>( const_cast<FixedImageMaskType *>( mask ) )->GetImage() );
    maskResampler->UseReferenceImageOn();
    maskResampler->SetReferenceImage( castfilter->GetOutput() );
    maskResampler->SetSize( virtualDomainImage->GetBufferedRegion().GetSize() );
    maskResampler->SetDefaultPixelValue( 0 );

    weightedMask = maskResampler->GetOutput();
    weightedMask->Update();
    weightedMask->DisconnectPipeline();
    }

  DisplacementFieldPointer updateField = this->BSplineSmoothDisplacementField( importer->GetOutput(),
    this->m_FixedToMiddleTransform->GetNumberOfControlPointsForTheUpdateField(), weightedMask );

  typename DisplacementFieldType::SpacingType spacing = updateField->GetSpacing();
  ImageRegionConstIterator<DisplacementFieldType> ItF( updateField, updateField->GetLargestPossibleRegion() );

  RealType maxNorm = NumericTraits<RealType>::NonpositiveMin();
  for( ItF.GoToBegin(); !ItF.IsAtEnd(); ++ItF )
    {
    DisplacementVectorType vector = ItF.Get();

    RealType localNorm = 0;
    for( unsigned int d = 0; d < ImageDimension; d++ )
      {
      localNorm += vnl_math_sqr( vector[d] / spacing[d] );
      }
    localNorm = vcl_sqrt( localNorm );

    if( localNorm > maxNorm )
      {
      maxNorm = localNorm;
      }
    }

  RealType scale = this->m_LearningRate / maxNorm;

  typedef Image<RealType, ImageDimension> RealImageType;

  typedef MultiplyImageFilter<DisplacementFieldType, RealImageType, DisplacementFieldType> MultiplierType;
  typename MultiplierType::Pointer multiplier = MultiplierType::New();
  multiplier->SetInput( updateField );
  multiplier->SetConstant( scale );

  typename DisplacementFieldType::Pointer scaledUpdateField = multiplier->GetOutput();
  scaledUpdateField->Update();
  scaledUpdateField->DisconnectPipeline();

  return scaledUpdateField;
}

template<typename TFixedImage, typename TMovingImage, typename TOutputTransform>
typename BSplineSyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform>::DisplacementFieldPointer
BSplineSyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform>
::BSplineSmoothDisplacementField( const DisplacementFieldType * field, const ArrayType & numberOfControlPoints, const WeightedMaskImageType * mask )
{
  typedef ImageDuplicator<DisplacementFieldType> DuplicatorType;
  typename DuplicatorType::Pointer duplicator = DuplicatorType::New();
  duplicator->SetInputImage( field );
  duplicator->Update();

  DisplacementFieldPointer smoothField = duplicator->GetModifiableOutput();

  for( unsigned int d = 0; d < numberOfControlPoints.Size(); d++ )
    {
    if( numberOfControlPoints[d] <= 0 )
      {
      return smoothField;
      }
    }

  typename BSplineFilterType::Pointer bspliner = BSplineFilterType::New();
  bspliner->SetDisplacementField( field );
  if( mask )
    {
    bspliner->SetConfidenceImage( mask );
    }
  bspliner->SetNumberOfControlPoints( numberOfControlPoints );
  bspliner->SetSplineOrder( this->m_FixedToMiddleTransform->GetSplineOrder() );
  bspliner->SetNumberOfFittingLevels( 1 );
  bspliner->SetEnforceStationaryBoundary( true );
  bspliner->SetEstimateInverse( false );
  bspliner->Update();

  smoothField = bspliner->GetOutput();

  return smoothField;
}

} // end namespace itk

#endif