This file is indexed.

/usr/include/ITK-4.5/itkBioCell.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkBioCell_hxx
#define __itkBioCell_hxx

#include "itkBioCell.h"
#include "vnl/vnl_math.h"
#include "vnl/vnl_sample.h"
#include <new>

namespace itk
{
namespace bio
{
/**
 *    Constructor Lonely Cell
 */
template< unsigned int NSpaceDimension >
Cell< NSpaceDimension >
::Cell()
{
  m_Force.Fill(0.0f);

  // Genome pointers are set to NULL in the superclass.
}

/**
 *    Destructor
 */
template< unsigned int NSpaceDimension >
Cell< NSpaceDimension >
::~Cell()
{
  // Genomes are released in the destructor of the superclass.
}

/**
 *    Cell Division
 */

template< unsigned int NSpaceDimension >
void
Cell< NSpaceDimension >
::Mitosis(void)
{
  // Create the two daughters.
  Cell *siblingA = new Cell;
  Cell *siblingB = new Cell;

  // Broad compensation for Volume distribution among daugthers.
  // The type of root should depend on the Dimension...
  siblingA->m_Radius   = m_Radius / vcl_sqrt(2.0f);
  siblingB->m_Radius   = m_Radius / vcl_sqrt(2.0f);

  // Update Teleomeres
  siblingA->m_Generation = m_Generation + 1;
  siblingB->m_Generation = m_Generation + 1;

  // Prepare to separate them by a specific distance.
  // This helps to avoid infinite interaction forces
  // just after cellular division.
  const double perturbationLength = m_Radius * 0.75;

  // Register the parent
  siblingA->m_ParentIdentifier = m_SelfIdentifier;
  siblingB->m_ParentIdentifier = m_SelfIdentifier;

  // Pass the genome to each daughter cell
  siblingA->m_Genome = m_Genome;
  siblingB->m_Genome = m_GenomeCopy;

  // Mark that the genome pointer is not owned by this cell anymore.
  m_Genome     = NULL;
  m_GenomeCopy = NULL;

  // Register both daughter cells with the CellularAggregate.
  CellularAggregateBase *aggregate = this->GetCellularAggregate();
  aggregate->Add(siblingA, siblingB, perturbationLength);

  // Mark this cell for being removed from the Aggregate and deleted.
  this->MarkForRemoval();
}

/**
 *    Create a New Egg Cell
 *    This method behaves like a factory.  It is
 *    intended to be overloaded in any class
 *    deriving from Cell.
 */
template< unsigned int NSpaceDimension >
Cell< NSpaceDimension > *
Cell< NSpaceDimension >
::CreateEgg(void)
{
  Cell *cell = new Cell;

  cell->m_ParentIdentifier = 0;
  cell->m_SelfIdentifier = 1;
  cell->m_Generation = 0;

  cell->m_Genome = new GenomeType;

  cell->ComputeGeneNetwork();
  cell->SecreteProducts();

  return cell;
}

/**
 *    Clear the cumulator for applied forces
 */
template< unsigned int NSpaceDimension >
void
Cell< NSpaceDimension >
::ClearForce(void)
{
  m_Force.Fill(0.0f);
  m_Pressure  = 0.0f;
}

/**
 *    Return the cumulated force
 */
template< unsigned int NSpaceDimension >
const typename Cell< NSpaceDimension >::VectorType &
Cell< NSpaceDimension >
::GetForce(void) const
{
  return m_Force;
}

/**
 *    Return a pointer to the Cellular Aggregate
 */
template< unsigned int NSpaceDimension >
CellularAggregateBase *
Cell< NSpaceDimension >
::GetCellularAggregate(void)
{
  return m_Aggregate;
}

/**
 *    Return a const pointer to the Cellular Aggregate
 */
template< unsigned int NSpaceDimension >
const CellularAggregateBase *
Cell< NSpaceDimension >
::GetCellularAggregate(void) const
{
  return m_Aggregate;
}

/**
 *   Set Cellular Aggregate
 */
template< unsigned int NSpaceDimension >
void
Cell< NSpaceDimension >
::SetCellularAggregate(CellularAggregateBase *cells)
{
  m_Aggregate = cells;
}

/**
 *    Add a force to the cumulator
 */
template< unsigned int NSpaceDimension >
void
Cell< NSpaceDimension >
::AddForce(const VectorType & force)
{
  if ( m_ChemoAttractantLevel > ChemoAttractantLowThreshold
       && m_ChemoAttractantLevel < ChemoAttractantHighThreshold   )
    {
    double factor = 1.0 / vcl_pow( m_Radius, (double)( NSpaceDimension ) );
    m_Force += force;
    m_Pressure += force.GetNorm() * factor;
    }
  else
    {
    // no force so it is fixed in place....
    }
}

/**
 *    Programmed Cell Death
 *    This is the cellular equivalent of suicide.
 */
template< unsigned int NSpaceDimension >
void
Cell< NSpaceDimension >
::Apoptosis(void)
{
  // This call will release the Genomes
  this->Superclass::Apoptosis();

  CellularAggregateBase *aggregate = GetCellularAggregate();

  // "this" cell will be destroyed here
  aggregate->Remove(this);
}

/**
 *    Execute a time step in the life of the cell.
 *    This is one step in the cell cycle.
 *
 *    Nutrients are acquired
 *    Energy is acquired
 *    If conditions allow it, the cell will grow
 *    The position will be updated according to
 *    applied forces
 */
template< unsigned int NSpaceDimension >
void
Cell< NSpaceDimension >
::AdvanceTimeStep(void)
{
  // get input from the environment
  this->ReceptorsReading();

  // update the level of expression of all the
  // genes in the gene network
  this->ComputeGeneNetwork();

  // this method produces the effects of gene
  // activation and protein synthesis. It is
  // mostly used for secreting proteins already
  // synthetized in the ComputeGeneNetwork method.
  this->SecreteProducts();

  // If this happens, it is an
  // emergency situation: Do it first.
  if ( this->CheckPointApoptosis() )
    {
    m_CycleState = Apop;
    }

  switch ( m_CycleState )
    {
    case M: // Mitosis
      m_CycleState = Gap1;
      break;
    case Gap1:
      {
      // Gap 1 : growing
      if ( this->CheckPointDNAReplication() )
        {
        m_CycleState = S;
        }
      break;
      }
    case S:
      m_CycleState = Gap2;
      break;
    case Gap2:
      if ( this->CheckPointMitosis() )
        {
        m_CycleState = M;
        }
      break;
    case Gap0:
      // The cell is in cell cycle arrest
      m_CycleState = Gap0;
      break;
    case Apop:
      m_CycleState = Apop;
      break;
    }

  // Atomaton : Execute action
  switch ( m_CycleState )
    {
    case M:  // Mitosis
      // This is a terminal action. The implementation of the cell
      // is destroyed after division. Our abstraction assumes that
      // the cell disapears and two new cell are created.
      this->Mitosis();
      break;
    case Gap1:
      // Eat and grow
      this->NutrientsIntake();
      this->EnergyIntake();
      this->Grow();
      break;
    case Gap0:
      this->NutrientsIntake();
      this->EnergyIntake();
      break;
    case S:
      this->DNAReplication();
      break;
    case Gap2:
      break;
    case Apop:
      this->Apoptosis();
      break;
    }
}

/**
 *    Reading substrate using receptors
 */
template< unsigned int NSpaceDimension >
void
Cell< NSpaceDimension >
::ReceptorsReading(void)
{
  m_Genome->SetExpressionLevel(Pressurin, m_Pressure);

  float substrate0 = m_Aggregate->GetSubstrateValue(m_SelfIdentifier, 0);

  m_ChemoAttractantLevel = substrate0;
}
}  // end namespace bio
}  // end namespace itk

#endif