This file is indexed.

/usr/include/ITK-4.5/itkCentralDifferenceImageFunction.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkCentralDifferenceImageFunction_hxx
#define __itkCentralDifferenceImageFunction_hxx

#include "itkCentralDifferenceImageFunction.h"
#include "itkLinearInterpolateImageFunction.h"

namespace itk
{
/**
 * Constructor
 */
template< typename TInputImage, typename TCoordRep, typename TOutputType >
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::CentralDifferenceImageFunction()
{
  this->m_UseImageDirection = true;

  /* Interpolator. Default to linear. */
  typedef LinearInterpolateImageFunction< TInputImage, TCoordRep >
                                                  LinearInterpolatorType;
  this->m_Interpolator = LinearInterpolatorType::New();
}

/**
 *
 */
template< typename TInputImage, typename TCoordRep, typename TOutputType >
void
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::SetInputImage(const TInputImage *inputData)
{
  if ( inputData != this->m_Image )
    {
    Superclass::SetInputImage( inputData );
    this->m_Interpolator->SetInputImage( inputData );

    // Verify the output vector is the right size.
    // OutputType of VariablelengthVector will have size 0 until allocated, so this
    // case can't be tested.
    if( inputData != NULL )
    {
      SizeValueType nComponents = OutputConvertType::GetNumberOfComponents();
      if( nComponents > 0 )
        {
        if( nComponents != inputData->GetNumberOfComponentsPerPixel() * TInputImage::ImageDimension )
          {
          itkExceptionMacro("The OutputType is not the right size (" << nComponents << ") for the given pixel size ("
                            << inputData->GetNumberOfComponentsPerPixel() << ") and image dimension (" << TInputImage::ImageDimension << ").")
          }
        }
    }
    this->Modified();
    }
}

/**
 *
 */
template< typename TInputImage, typename TCoordRep, typename TOutputType >
void
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::SetInterpolator(InterpolatorType *interpolator )
{
  if ( interpolator != this->m_Interpolator )
    {
    this->m_Interpolator = interpolator;
    if( this->GetInputImage() != NULL )
      {
      this->m_Interpolator->SetInputImage( this->GetInputImage() );
      }
    this->Modified();
    }
}

/**
 *
 */
template< typename TInputImage, typename TCoordRep, typename TOutputType >
void
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::PrintSelf(std::ostream & os, Indent indent) const
{
  this->Superclass::PrintSelf(os, indent);
  os << indent << "UseImageDirection = " << this->m_UseImageDirection << std::endl;
}

/**
 * EvaluateAtIndex
 */
template< typename TInputImage, typename TCoordRep, typename TOutputType >
typename CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >::OutputType
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::EvaluateAtIndex(const IndexType & index) const
{
  OutputType derivative;

  // When ScalarDerivativeType is the same as OutputType, this calls
  // the version specialized for scalar pixels since in that case,
  // the two vector types are the same.
  EvaluateAtIndexSpecialized<ScalarDerivativeType>( index, derivative, OutputTypeSpecializationStructType<ScalarDerivativeType>() );

  return derivative;
}

/*
 * Specialized for scalar pixels
 */
template< typename TInputImage, typename TCoordRep, typename TOutputType >
template< typename Type >
void
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::EvaluateAtIndexSpecialized(const IndexType & index, OutputType & orientedDerivative, OutputTypeSpecializationStructType<OutputType>) const
{
  OutputType derivative;

  IndexType neighIndex = index;

  const InputImageType *inputImage = this->GetInputImage();

  const typename InputImageType::RegionType & region =
    inputImage->GetBufferedRegion();

  const typename InputImageType::SizeType & size   = region.GetSize();
  const typename InputImageType::IndexType & start = region.GetIndex();

  const unsigned int MaxDims = Self::ImageDimension;
  for ( unsigned int dim = 0; dim < MaxDims; dim++ )
    {
    // bounds checking
    // checks for index either on the boundary or out of bounds.
    // note that the documentation says this method assumes the index
    // is in-bounds, so we don't do anything else if the point is out of bounds.
    if ( index[dim] < start[dim] + 1 || index[dim] > ( start[dim] + static_cast< OffsetValueType >( size[dim] ) - 2 ) )
      {
      derivative[dim] = NumericTraits<OutputValueType>::Zero;
      continue;
      }

    // compute derivative
    neighIndex[dim] += 1;
    derivative[dim] = inputImage->GetPixel(neighIndex);

    neighIndex[dim] -= 2;
    derivative[dim] -= inputImage->GetPixel(neighIndex);

    derivative[dim] *= static_cast<OutputValueType>(0.5) / inputImage->GetSpacing()[dim];
    neighIndex[dim] += 1;
    }

  if ( this->m_UseImageDirection )
    {
    inputImage->TransformLocalVectorToPhysicalVector(derivative, orientedDerivative);
    }
  else
    {
    orientedDerivative = derivative;
    }

}

/*
 * Specialized for vector pixels
 */
template< typename TInputImage, typename TCoordRep, typename TOutputType >
template< typename Type >
void
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::EvaluateAtIndexSpecialized(const IndexType & index, OutputType & derivative, OutputTypeSpecializationStructType<Type>) const
{
  const InputImageType *inputImage = this->GetInputImage();
  const unsigned int numberComponents = this->GetInputImage()->GetNumberOfComponentsPerPixel();

  IndexType neighIndex = index;

  const typename InputImageType::RegionType & region = inputImage->GetBufferedRegion();
  const typename InputImageType::SizeType & size     = region.GetSize();
  const typename InputImageType::IndexType & start   = region.GetIndex();

  typedef typename InputImageType::PixelType PixelType;
  const PixelType * neighPixels[Self::ImageDimension][2];
  const PixelType zeroPixel = NumericTraits<PixelType>::ZeroValue();
  const unsigned int MaxDims = Self::ImageDimension;
  bool  dimOutOfBounds[Self::ImageDimension];

  for ( unsigned int dim = 0; dim < MaxDims; dim++ )
    {
    // initialize to quiet compiler warnings
    neighPixels[dim][0] = &zeroPixel;
    neighPixels[dim][1] = &zeroPixel;

    // cached bounds checking
    dimOutOfBounds[dim] = ( ( index[dim] < (start[dim] + 1) ) || index[dim] > ( start[dim] + static_cast< OffsetValueType >( size[dim] ) - 2 ) );
    }

  for ( unsigned int nc = 0; nc < numberComponents; nc++)
    {
    ScalarDerivativeType componentDerivative;

    for ( unsigned int dim = 0; dim < MaxDims; dim++ )
      {
      // bounds checking
      if( dimOutOfBounds[dim] )
        {
        componentDerivative[dim] = NumericTraits<OutputValueType>::ZeroValue();
        continue;
        }

      // get pixels
      if( nc == 0 )
        {
        neighIndex[dim] += 1;
        neighPixels[dim][0] = &( inputImage->GetPixel(neighIndex) );
        neighIndex[dim] -= 2;
        neighPixels[dim][1] = &( inputImage->GetPixel(neighIndex) );
        neighIndex[dim] += 1;
        }

      // compute derivative
      componentDerivative[dim] = InputPixelConvertType::GetNthComponent( nc, *neighPixels[dim][0] );
      componentDerivative[dim] -= InputPixelConvertType::GetNthComponent( nc, *neighPixels[dim][1] );
      componentDerivative[dim] *= 0.5 / inputImage->GetSpacing()[dim];
      }

    if ( this->m_UseImageDirection )
      {
      ScalarDerivativeType componentDerivativeOut;
      inputImage->TransformLocalVectorToPhysicalVector(componentDerivative, componentDerivativeOut);
      for ( unsigned int dim = 0; dim < MaxDims; dim++ )
        {
        OutputConvertType::SetNthComponent( nc * MaxDims + dim, derivative, componentDerivativeOut[dim] );
        }
      }
    else
      {
      for ( unsigned int dim = 0; dim < MaxDims; dim++ )
        {
        OutputConvertType::SetNthComponent( nc * MaxDims + dim, derivative, componentDerivative[dim] );
        }
      }
    }
}

/**
 *
 */
template< typename TInputImage, typename TCoordRep, typename TOutputType >
typename CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >::OutputType
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::Evaluate(const PointType & point) const
{
  OutputType derivative;

  // When ScalarDerivativeType is the same as OutputType, this calls
  // the version specialized for scalar pixels since in that case,
  // the two vector types are the same.
  EvaluateSpecialized<ScalarDerivativeType>( point, derivative, OutputTypeSpecializationStructType<ScalarDerivativeType>() );

  return derivative;
}

/*
 * Specialized for scalar pixels
 */
template< typename TInputImage, typename TCoordRep, typename TOutputType >
template< typename Type >
void
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::EvaluateSpecialized(const PointType & point, OutputType & orientedDerivative, OutputTypeSpecializationStructType<OutputType>) const
{
  typedef typename PointType::ValueType           PointValueType;
  typedef typename OutputType::ValueType          DerivativeValueType;
  typedef typename ContinuousIndexType::ValueType ContinuousIndexValueType;

  PointType neighPoint1 = point;
  PointType neighPoint2 = point;

  const InputImageType *inputImage = this->GetInputImage();

  const SpacingType & spacing = inputImage->GetSpacing();

  const unsigned int MaxDims = Self::ImageDimension;
  for ( unsigned int dim = 0; dim < MaxDims; dim++ )
    {
    PointValueType offset = static_cast<PointValueType>(0.5) * spacing[dim];
    // Check the bounds using the point because the image direction may swap dimensions,
    // making checks in index space inaccurate.
    // If on a boundary, we set the derivative to zero. This is done to match the behavior
    // of EvaluateAtIndex. Another approach is to calculate the 1-sided difference.
    neighPoint1[dim] = point[dim] - offset;
    if( ! this->IsInsideBuffer( neighPoint1 ) )
      {
      orientedDerivative[dim] = NumericTraits<DerivativeValueType>::Zero;
      neighPoint1[dim] = point[dim];
      neighPoint2[dim] = point[dim];
      continue;
      }
    neighPoint2[dim] = point[dim] + offset;
    if( ! this->IsInsideBuffer( neighPoint2 ) )
      {
      orientedDerivative[dim] = NumericTraits<DerivativeValueType>::Zero;
      neighPoint1[dim] = point[dim];
      neighPoint2[dim] = point[dim];
      continue;
      }

    PointValueType delta = neighPoint2[dim] - neighPoint1[dim];
    if( delta > 10.0 * NumericTraits<PointValueType>::epsilon() )
      {
      orientedDerivative[dim] = ( this->m_Interpolator->Evaluate( neighPoint2 ) - this->m_Interpolator->Evaluate( neighPoint1 ) ) / delta;
      }
    else
      {
      orientedDerivative[dim] = static_cast<DerivativeValueType>(0.0);
      }

    neighPoint1[dim] = point[dim];
    neighPoint2[dim] = point[dim];
    }

  // Since we've implicitly calculated the derivative with respect to image
  // direction, we need to reorient into index-space if the user desires.
  if ( ! this->m_UseImageDirection )
    {
    OutputType derivative;
    inputImage->TransformPhysicalVectorToLocalVector( orientedDerivative, derivative );
    orientedDerivative = derivative;
    }
}

/*
 * Specialized for vector pixels
 */
template< typename TInputImage, typename TCoordRep, typename TOutputType >
template< typename Type >
void
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::EvaluateSpecialized(const PointType & point, OutputType & derivative, OutputTypeSpecializationStructType<Type>) const
{
  typedef typename PointType::ValueType           PointValueType;
  typedef typename OutputType::ValueType          DerivativeValueType;
  typedef typename ContinuousIndexType::ValueType ContinuousIndexValueType;

  const InputImageType *inputImage = this->GetInputImage();
  const unsigned int numberComponents = inputImage->GetNumberOfComponentsPerPixel();

  PointType neighPoint1 = point;
  PointType neighPoint2 = point;

  const SpacingType & spacing = inputImage->GetSpacing();

  typedef typename InputImageType::PixelType PixelType;
  PixelType neighPixels[Self::ImageDimension][2];
  bool  dimOutOfBounds[Self::ImageDimension];
  const unsigned int MaxDims = Self::ImageDimension;
  PointValueType delta[Self::ImageDimension];
  PixelType zeroPixel = NumericTraits<PixelType>::ZeroValue();

  ScalarDerivativeType componentDerivativeOut;
  ScalarDerivativeType componentDerivative;
  componentDerivative.Fill( NumericTraits<OutputValueType>::Zero );

  for ( unsigned int dim = 0; dim < Self::ImageDimension; dim++ )
    {
    // initialize to quiet compiler warnings
    neighPixels[dim][0] = zeroPixel;
    neighPixels[dim][1] = zeroPixel;
    delta[dim] = NumericTraits<PointValueType>::ZeroValue();
    dimOutOfBounds[dim] = true;
    }

  for ( unsigned int nc = 0; nc < numberComponents; nc++ )
    {
    for ( unsigned int dim = 0; dim < MaxDims; dim++ )
      {
      // Initialize values that only depend on dimension and not component number.
      if( nc == 0 )
        {
        // Check the bounds using the point because the image direction may swap dimensions,
        // making checks in index space inaccurate.
        // If on a boundary, we set the derivative to zero. This is done to match the behavior
        // of EvaluateAtIndex. Another approach is to calculate the 1-sided difference.
        PointValueType offset = static_cast<PointValueType>(0.5) * spacing[dim];
        neighPoint1[dim] = point[dim] - offset;
        neighPoint2[dim] = point[dim] + offset;
        dimOutOfBounds[dim] = ( ! this->IsInsideBuffer( neighPoint1 ) || ! this->IsInsideBuffer( neighPoint2 ) );

        if( dimOutOfBounds[dim] )
          {
          componentDerivative[dim] = NumericTraits<OutputValueType>::Zero;
          neighPoint1[dim] = point[dim];
          neighPoint2[dim] = point[dim];
          continue;
          }

        neighPixels[dim][0] = this->m_Interpolator->Evaluate( neighPoint2 );
        neighPixels[dim][1] = this->m_Interpolator->Evaluate( neighPoint1 );

        delta[dim] = neighPoint2[dim] - neighPoint1[dim];

        neighPoint1[dim] = point[dim];
        neighPoint2[dim] = point[dim];
        }
      else
        {
        if( dimOutOfBounds[dim] )
          {
          continue;
          }
        }

      if( delta[dim] > 10.0 * NumericTraits<PointValueType>::epsilon() )
        {
        OutputValueType left = InputPixelConvertType::GetNthComponent( nc, neighPixels[dim][0] );
        OutputValueType right = InputPixelConvertType::GetNthComponent( nc, neighPixels[dim][1] );
        componentDerivative[dim] = (left - right) / delta[dim];
        }
      else
        {
        componentDerivative[dim] = NumericTraits<OutputValueType>::ZeroValue();
        }
      }

    // Since we've implicitly calculated the derivative with respect to image
    // direction, we need to reorient into index-space if the user
    // desires.
    if ( ! this->m_UseImageDirection )
      {
      inputImage->TransformPhysicalVectorToLocalVector(componentDerivative, componentDerivativeOut);
      for ( unsigned int dim = 0; dim < MaxDims; dim++ )
        {
        OutputConvertType::SetNthComponent( nc * MaxDims + dim, derivative, componentDerivativeOut[dim] );
        }
      }
    else
      {
      for ( unsigned int dim = 0; dim < MaxDims; dim++ )
        {
        OutputConvertType::SetNthComponent( nc * MaxDims + dim, derivative, componentDerivative[dim] );
        }
      }
    }
}

/**
 * EvaluateAtContinuousIndex
 */
template< typename TInputImage, typename TCoordRep, typename TOutputType >
typename CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >::OutputType
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::EvaluateAtContinuousIndex(const ContinuousIndexType & cindex) const
{
  OutputType derivative;
  // When ScalarDerivativeType is the same as OutputType, this calls
  // the version specialized for scalar pixels since in that case,
  // the two vector types are the same.
  this->EvaluateAtContinuousIndexSpecialized<ScalarDerivativeType>( cindex, derivative, OutputTypeSpecializationStructType<ScalarDerivativeType>() );
  return derivative;
}

/*
 * Specialized for scalar pixels
 */
template< typename TInputImage, typename TCoordRep, typename TOutputType >
template< typename Type >
void
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::EvaluateAtContinuousIndexSpecialized(const ContinuousIndexType & cindex, OutputType & orientedDerivative, OutputTypeSpecializationStructType<OutputType>) const
{
  typedef typename OutputType::ValueType          DerivativeValueType;
  typedef typename ContinuousIndexType::ValueType ContinuousIndexValueType;

  OutputType derivative;

  ContinuousIndexType neighIndex = cindex;

  const InputImageType *inputImage = this->GetInputImage();

  const typename InputImageType::RegionType & region = inputImage->GetBufferedRegion();

  const typename InputImageType::SizeType & size   = region.GetSize();
  const typename InputImageType::IndexType & start = region.GetIndex();

  const unsigned int MaxDims = Self::ImageDimension;
  for ( unsigned int dim = 0; dim < MaxDims; dim++ )
    {
    // bounds checking
    if ( cindex[dim] < static_cast<ContinuousIndexValueType>(start[dim] + 1)
         || cindex[dim] > static_cast<ContinuousIndexValueType>
            ( start[dim] + static_cast< OffsetValueType >( size[dim] ) - 2 ) )
      {
      derivative[dim] = NumericTraits<DerivativeValueType>::Zero;
      continue;
      }

    // compute derivative
    neighIndex[dim] += static_cast<ContinuousIndexValueType>(1.0);
    derivative[dim] = this->m_Interpolator->EvaluateAtContinuousIndex(neighIndex);

    neighIndex[dim] -= static_cast<ContinuousIndexValueType>(2.0);
    derivative[dim] -= this->m_Interpolator->EvaluateAtContinuousIndex(neighIndex);

    derivative[dim] *= static_cast<ContinuousIndexValueType>(0.5) / inputImage->GetSpacing()[dim];
    neighIndex[dim] += static_cast<ContinuousIndexValueType>(1.0);
    }

  if ( this->m_UseImageDirection )
    {
    inputImage->TransformLocalVectorToPhysicalVector(derivative, orientedDerivative);
    }
  else
    {
    orientedDerivative = derivative;
    }
}

/*
 * Specialized for vector pixels
 */
template< typename TInputImage, typename TCoordRep, typename TOutputType >
template< typename Type >
void
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::EvaluateAtContinuousIndexSpecialized(const ContinuousIndexType & cindex, OutputType & derivative, OutputTypeSpecializationStructType<Type>) const
{
  typedef typename OutputType::ValueType          DerivativeValueType;
  typedef typename ContinuousIndexType::ValueType ContinuousIndexValueType;

  const InputImageType *inputImage = this->GetInputImage();
  const unsigned int numberComponents = inputImage->GetNumberOfComponentsPerPixel();

  ContinuousIndexType neighIndex = cindex;
  const typename InputImageType::RegionType & region = inputImage->GetBufferedRegion();

  const typename InputImageType::SizeType & size   = region.GetSize();
  const typename InputImageType::IndexType & start = region.GetIndex();

  typedef typename InputImageType::PixelType PixelType;
  PixelType neighPixels[Self::ImageDimension][2];
  bool  dimOutOfBounds[Self::ImageDimension];
  const unsigned int MaxDims = Self::ImageDimension;
  PixelType zeroPixel = NumericTraits<PixelType>::ZeroValue();

  for ( unsigned int dim = 0; dim < MaxDims; dim++ )
    {
    // initialize to quiet compiler warnings
    neighPixels[dim][0] = zeroPixel;
    neighPixels[dim][1] = zeroPixel;

    // bounds checking
    dimOutOfBounds[dim] = ( ( cindex[dim] < static_cast<ContinuousIndexValueType>(start[dim] + 1) )
                            || cindex[dim] > static_cast<ContinuousIndexValueType> ( start[dim] + static_cast< OffsetValueType >( size[dim] ) - 2 ) );
    }

  for ( unsigned int nc = 0; nc < numberComponents; nc++)
    {
    ScalarDerivativeType componentDerivative;
    ScalarDerivativeType componentDerivativeOut;

    for ( unsigned int dim = 0; dim < MaxDims; dim++ )
      {
      if( dimOutOfBounds[dim] )
        {
        componentDerivative[dim] = NumericTraits<DerivativeValueType>::ZeroValue();
        continue;
        }

      // get pixels
      if( nc == 0 )
        {
        neighIndex[dim] += static_cast<ContinuousIndexValueType>(1.0);
        neighPixels[dim][0] = this->m_Interpolator->EvaluateAtContinuousIndex(neighIndex);
        neighIndex[dim] -= static_cast<ContinuousIndexValueType>(2.0);
        neighPixels[dim][1] = this->m_Interpolator->EvaluateAtContinuousIndex(neighIndex);
        neighIndex[dim] += static_cast<ContinuousIndexValueType>(1.0);
        }

      // compute derivative
      componentDerivative[dim] = InputPixelConvertType::GetNthComponent(nc, neighPixels[dim][0] );
      componentDerivative[dim] -= InputPixelConvertType::GetNthComponent(nc, neighPixels[dim][1] );
      componentDerivative[dim] *= static_cast<ContinuousIndexValueType>(0.5) / inputImage->GetSpacing()[dim];
      }

    if ( this->m_UseImageDirection )
      {
      inputImage->TransformLocalVectorToPhysicalVector(componentDerivative, componentDerivativeOut);
      for ( unsigned int dim = 0; dim < MaxDims; dim++ )
        {
        OutputConvertType::SetNthComponent( nc * MaxDims + dim, derivative, componentDerivativeOut[dim] );
        }
      }
    else
      {
      for ( unsigned int dim = 0; dim < MaxDims; dim++ )
        {
        OutputConvertType::SetNthComponent( nc * MaxDims + dim, derivative, componentDerivative[dim] );
        }
      }
    }
}

} // end namespace itk

#endif