/usr/include/ITK-4.5/itkCentralDifferenceImageFunction.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkCentralDifferenceImageFunction_hxx
#define __itkCentralDifferenceImageFunction_hxx
#include "itkCentralDifferenceImageFunction.h"
#include "itkLinearInterpolateImageFunction.h"
namespace itk
{
/**
* Constructor
*/
template< typename TInputImage, typename TCoordRep, typename TOutputType >
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::CentralDifferenceImageFunction()
{
this->m_UseImageDirection = true;
/* Interpolator. Default to linear. */
typedef LinearInterpolateImageFunction< TInputImage, TCoordRep >
LinearInterpolatorType;
this->m_Interpolator = LinearInterpolatorType::New();
}
/**
*
*/
template< typename TInputImage, typename TCoordRep, typename TOutputType >
void
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::SetInputImage(const TInputImage *inputData)
{
if ( inputData != this->m_Image )
{
Superclass::SetInputImage( inputData );
this->m_Interpolator->SetInputImage( inputData );
// Verify the output vector is the right size.
// OutputType of VariablelengthVector will have size 0 until allocated, so this
// case can't be tested.
if( inputData != NULL )
{
SizeValueType nComponents = OutputConvertType::GetNumberOfComponents();
if( nComponents > 0 )
{
if( nComponents != inputData->GetNumberOfComponentsPerPixel() * TInputImage::ImageDimension )
{
itkExceptionMacro("The OutputType is not the right size (" << nComponents << ") for the given pixel size ("
<< inputData->GetNumberOfComponentsPerPixel() << ") and image dimension (" << TInputImage::ImageDimension << ").")
}
}
}
this->Modified();
}
}
/**
*
*/
template< typename TInputImage, typename TCoordRep, typename TOutputType >
void
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::SetInterpolator(InterpolatorType *interpolator )
{
if ( interpolator != this->m_Interpolator )
{
this->m_Interpolator = interpolator;
if( this->GetInputImage() != NULL )
{
this->m_Interpolator->SetInputImage( this->GetInputImage() );
}
this->Modified();
}
}
/**
*
*/
template< typename TInputImage, typename TCoordRep, typename TOutputType >
void
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::PrintSelf(std::ostream & os, Indent indent) const
{
this->Superclass::PrintSelf(os, indent);
os << indent << "UseImageDirection = " << this->m_UseImageDirection << std::endl;
}
/**
* EvaluateAtIndex
*/
template< typename TInputImage, typename TCoordRep, typename TOutputType >
typename CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >::OutputType
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::EvaluateAtIndex(const IndexType & index) const
{
OutputType derivative;
// When ScalarDerivativeType is the same as OutputType, this calls
// the version specialized for scalar pixels since in that case,
// the two vector types are the same.
EvaluateAtIndexSpecialized<ScalarDerivativeType>( index, derivative, OutputTypeSpecializationStructType<ScalarDerivativeType>() );
return derivative;
}
/*
* Specialized for scalar pixels
*/
template< typename TInputImage, typename TCoordRep, typename TOutputType >
template< typename Type >
void
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::EvaluateAtIndexSpecialized(const IndexType & index, OutputType & orientedDerivative, OutputTypeSpecializationStructType<OutputType>) const
{
OutputType derivative;
IndexType neighIndex = index;
const InputImageType *inputImage = this->GetInputImage();
const typename InputImageType::RegionType & region =
inputImage->GetBufferedRegion();
const typename InputImageType::SizeType & size = region.GetSize();
const typename InputImageType::IndexType & start = region.GetIndex();
const unsigned int MaxDims = Self::ImageDimension;
for ( unsigned int dim = 0; dim < MaxDims; dim++ )
{
// bounds checking
// checks for index either on the boundary or out of bounds.
// note that the documentation says this method assumes the index
// is in-bounds, so we don't do anything else if the point is out of bounds.
if ( index[dim] < start[dim] + 1 || index[dim] > ( start[dim] + static_cast< OffsetValueType >( size[dim] ) - 2 ) )
{
derivative[dim] = NumericTraits<OutputValueType>::Zero;
continue;
}
// compute derivative
neighIndex[dim] += 1;
derivative[dim] = inputImage->GetPixel(neighIndex);
neighIndex[dim] -= 2;
derivative[dim] -= inputImage->GetPixel(neighIndex);
derivative[dim] *= static_cast<OutputValueType>(0.5) / inputImage->GetSpacing()[dim];
neighIndex[dim] += 1;
}
if ( this->m_UseImageDirection )
{
inputImage->TransformLocalVectorToPhysicalVector(derivative, orientedDerivative);
}
else
{
orientedDerivative = derivative;
}
}
/*
* Specialized for vector pixels
*/
template< typename TInputImage, typename TCoordRep, typename TOutputType >
template< typename Type >
void
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::EvaluateAtIndexSpecialized(const IndexType & index, OutputType & derivative, OutputTypeSpecializationStructType<Type>) const
{
const InputImageType *inputImage = this->GetInputImage();
const unsigned int numberComponents = this->GetInputImage()->GetNumberOfComponentsPerPixel();
IndexType neighIndex = index;
const typename InputImageType::RegionType & region = inputImage->GetBufferedRegion();
const typename InputImageType::SizeType & size = region.GetSize();
const typename InputImageType::IndexType & start = region.GetIndex();
typedef typename InputImageType::PixelType PixelType;
const PixelType * neighPixels[Self::ImageDimension][2];
const PixelType zeroPixel = NumericTraits<PixelType>::ZeroValue();
const unsigned int MaxDims = Self::ImageDimension;
bool dimOutOfBounds[Self::ImageDimension];
for ( unsigned int dim = 0; dim < MaxDims; dim++ )
{
// initialize to quiet compiler warnings
neighPixels[dim][0] = &zeroPixel;
neighPixels[dim][1] = &zeroPixel;
// cached bounds checking
dimOutOfBounds[dim] = ( ( index[dim] < (start[dim] + 1) ) || index[dim] > ( start[dim] + static_cast< OffsetValueType >( size[dim] ) - 2 ) );
}
for ( unsigned int nc = 0; nc < numberComponents; nc++)
{
ScalarDerivativeType componentDerivative;
for ( unsigned int dim = 0; dim < MaxDims; dim++ )
{
// bounds checking
if( dimOutOfBounds[dim] )
{
componentDerivative[dim] = NumericTraits<OutputValueType>::ZeroValue();
continue;
}
// get pixels
if( nc == 0 )
{
neighIndex[dim] += 1;
neighPixels[dim][0] = &( inputImage->GetPixel(neighIndex) );
neighIndex[dim] -= 2;
neighPixels[dim][1] = &( inputImage->GetPixel(neighIndex) );
neighIndex[dim] += 1;
}
// compute derivative
componentDerivative[dim] = InputPixelConvertType::GetNthComponent( nc, *neighPixels[dim][0] );
componentDerivative[dim] -= InputPixelConvertType::GetNthComponent( nc, *neighPixels[dim][1] );
componentDerivative[dim] *= 0.5 / inputImage->GetSpacing()[dim];
}
if ( this->m_UseImageDirection )
{
ScalarDerivativeType componentDerivativeOut;
inputImage->TransformLocalVectorToPhysicalVector(componentDerivative, componentDerivativeOut);
for ( unsigned int dim = 0; dim < MaxDims; dim++ )
{
OutputConvertType::SetNthComponent( nc * MaxDims + dim, derivative, componentDerivativeOut[dim] );
}
}
else
{
for ( unsigned int dim = 0; dim < MaxDims; dim++ )
{
OutputConvertType::SetNthComponent( nc * MaxDims + dim, derivative, componentDerivative[dim] );
}
}
}
}
/**
*
*/
template< typename TInputImage, typename TCoordRep, typename TOutputType >
typename CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >::OutputType
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::Evaluate(const PointType & point) const
{
OutputType derivative;
// When ScalarDerivativeType is the same as OutputType, this calls
// the version specialized for scalar pixels since in that case,
// the two vector types are the same.
EvaluateSpecialized<ScalarDerivativeType>( point, derivative, OutputTypeSpecializationStructType<ScalarDerivativeType>() );
return derivative;
}
/*
* Specialized for scalar pixels
*/
template< typename TInputImage, typename TCoordRep, typename TOutputType >
template< typename Type >
void
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::EvaluateSpecialized(const PointType & point, OutputType & orientedDerivative, OutputTypeSpecializationStructType<OutputType>) const
{
typedef typename PointType::ValueType PointValueType;
typedef typename OutputType::ValueType DerivativeValueType;
typedef typename ContinuousIndexType::ValueType ContinuousIndexValueType;
PointType neighPoint1 = point;
PointType neighPoint2 = point;
const InputImageType *inputImage = this->GetInputImage();
const SpacingType & spacing = inputImage->GetSpacing();
const unsigned int MaxDims = Self::ImageDimension;
for ( unsigned int dim = 0; dim < MaxDims; dim++ )
{
PointValueType offset = static_cast<PointValueType>(0.5) * spacing[dim];
// Check the bounds using the point because the image direction may swap dimensions,
// making checks in index space inaccurate.
// If on a boundary, we set the derivative to zero. This is done to match the behavior
// of EvaluateAtIndex. Another approach is to calculate the 1-sided difference.
neighPoint1[dim] = point[dim] - offset;
if( ! this->IsInsideBuffer( neighPoint1 ) )
{
orientedDerivative[dim] = NumericTraits<DerivativeValueType>::Zero;
neighPoint1[dim] = point[dim];
neighPoint2[dim] = point[dim];
continue;
}
neighPoint2[dim] = point[dim] + offset;
if( ! this->IsInsideBuffer( neighPoint2 ) )
{
orientedDerivative[dim] = NumericTraits<DerivativeValueType>::Zero;
neighPoint1[dim] = point[dim];
neighPoint2[dim] = point[dim];
continue;
}
PointValueType delta = neighPoint2[dim] - neighPoint1[dim];
if( delta > 10.0 * NumericTraits<PointValueType>::epsilon() )
{
orientedDerivative[dim] = ( this->m_Interpolator->Evaluate( neighPoint2 ) - this->m_Interpolator->Evaluate( neighPoint1 ) ) / delta;
}
else
{
orientedDerivative[dim] = static_cast<DerivativeValueType>(0.0);
}
neighPoint1[dim] = point[dim];
neighPoint2[dim] = point[dim];
}
// Since we've implicitly calculated the derivative with respect to image
// direction, we need to reorient into index-space if the user desires.
if ( ! this->m_UseImageDirection )
{
OutputType derivative;
inputImage->TransformPhysicalVectorToLocalVector( orientedDerivative, derivative );
orientedDerivative = derivative;
}
}
/*
* Specialized for vector pixels
*/
template< typename TInputImage, typename TCoordRep, typename TOutputType >
template< typename Type >
void
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::EvaluateSpecialized(const PointType & point, OutputType & derivative, OutputTypeSpecializationStructType<Type>) const
{
typedef typename PointType::ValueType PointValueType;
typedef typename OutputType::ValueType DerivativeValueType;
typedef typename ContinuousIndexType::ValueType ContinuousIndexValueType;
const InputImageType *inputImage = this->GetInputImage();
const unsigned int numberComponents = inputImage->GetNumberOfComponentsPerPixel();
PointType neighPoint1 = point;
PointType neighPoint2 = point;
const SpacingType & spacing = inputImage->GetSpacing();
typedef typename InputImageType::PixelType PixelType;
PixelType neighPixels[Self::ImageDimension][2];
bool dimOutOfBounds[Self::ImageDimension];
const unsigned int MaxDims = Self::ImageDimension;
PointValueType delta[Self::ImageDimension];
PixelType zeroPixel = NumericTraits<PixelType>::ZeroValue();
ScalarDerivativeType componentDerivativeOut;
ScalarDerivativeType componentDerivative;
componentDerivative.Fill( NumericTraits<OutputValueType>::Zero );
for ( unsigned int dim = 0; dim < Self::ImageDimension; dim++ )
{
// initialize to quiet compiler warnings
neighPixels[dim][0] = zeroPixel;
neighPixels[dim][1] = zeroPixel;
delta[dim] = NumericTraits<PointValueType>::ZeroValue();
dimOutOfBounds[dim] = true;
}
for ( unsigned int nc = 0; nc < numberComponents; nc++ )
{
for ( unsigned int dim = 0; dim < MaxDims; dim++ )
{
// Initialize values that only depend on dimension and not component number.
if( nc == 0 )
{
// Check the bounds using the point because the image direction may swap dimensions,
// making checks in index space inaccurate.
// If on a boundary, we set the derivative to zero. This is done to match the behavior
// of EvaluateAtIndex. Another approach is to calculate the 1-sided difference.
PointValueType offset = static_cast<PointValueType>(0.5) * spacing[dim];
neighPoint1[dim] = point[dim] - offset;
neighPoint2[dim] = point[dim] + offset;
dimOutOfBounds[dim] = ( ! this->IsInsideBuffer( neighPoint1 ) || ! this->IsInsideBuffer( neighPoint2 ) );
if( dimOutOfBounds[dim] )
{
componentDerivative[dim] = NumericTraits<OutputValueType>::Zero;
neighPoint1[dim] = point[dim];
neighPoint2[dim] = point[dim];
continue;
}
neighPixels[dim][0] = this->m_Interpolator->Evaluate( neighPoint2 );
neighPixels[dim][1] = this->m_Interpolator->Evaluate( neighPoint1 );
delta[dim] = neighPoint2[dim] - neighPoint1[dim];
neighPoint1[dim] = point[dim];
neighPoint2[dim] = point[dim];
}
else
{
if( dimOutOfBounds[dim] )
{
continue;
}
}
if( delta[dim] > 10.0 * NumericTraits<PointValueType>::epsilon() )
{
OutputValueType left = InputPixelConvertType::GetNthComponent( nc, neighPixels[dim][0] );
OutputValueType right = InputPixelConvertType::GetNthComponent( nc, neighPixels[dim][1] );
componentDerivative[dim] = (left - right) / delta[dim];
}
else
{
componentDerivative[dim] = NumericTraits<OutputValueType>::ZeroValue();
}
}
// Since we've implicitly calculated the derivative with respect to image
// direction, we need to reorient into index-space if the user
// desires.
if ( ! this->m_UseImageDirection )
{
inputImage->TransformPhysicalVectorToLocalVector(componentDerivative, componentDerivativeOut);
for ( unsigned int dim = 0; dim < MaxDims; dim++ )
{
OutputConvertType::SetNthComponent( nc * MaxDims + dim, derivative, componentDerivativeOut[dim] );
}
}
else
{
for ( unsigned int dim = 0; dim < MaxDims; dim++ )
{
OutputConvertType::SetNthComponent( nc * MaxDims + dim, derivative, componentDerivative[dim] );
}
}
}
}
/**
* EvaluateAtContinuousIndex
*/
template< typename TInputImage, typename TCoordRep, typename TOutputType >
typename CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >::OutputType
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::EvaluateAtContinuousIndex(const ContinuousIndexType & cindex) const
{
OutputType derivative;
// When ScalarDerivativeType is the same as OutputType, this calls
// the version specialized for scalar pixels since in that case,
// the two vector types are the same.
this->EvaluateAtContinuousIndexSpecialized<ScalarDerivativeType>( cindex, derivative, OutputTypeSpecializationStructType<ScalarDerivativeType>() );
return derivative;
}
/*
* Specialized for scalar pixels
*/
template< typename TInputImage, typename TCoordRep, typename TOutputType >
template< typename Type >
void
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::EvaluateAtContinuousIndexSpecialized(const ContinuousIndexType & cindex, OutputType & orientedDerivative, OutputTypeSpecializationStructType<OutputType>) const
{
typedef typename OutputType::ValueType DerivativeValueType;
typedef typename ContinuousIndexType::ValueType ContinuousIndexValueType;
OutputType derivative;
ContinuousIndexType neighIndex = cindex;
const InputImageType *inputImage = this->GetInputImage();
const typename InputImageType::RegionType & region = inputImage->GetBufferedRegion();
const typename InputImageType::SizeType & size = region.GetSize();
const typename InputImageType::IndexType & start = region.GetIndex();
const unsigned int MaxDims = Self::ImageDimension;
for ( unsigned int dim = 0; dim < MaxDims; dim++ )
{
// bounds checking
if ( cindex[dim] < static_cast<ContinuousIndexValueType>(start[dim] + 1)
|| cindex[dim] > static_cast<ContinuousIndexValueType>
( start[dim] + static_cast< OffsetValueType >( size[dim] ) - 2 ) )
{
derivative[dim] = NumericTraits<DerivativeValueType>::Zero;
continue;
}
// compute derivative
neighIndex[dim] += static_cast<ContinuousIndexValueType>(1.0);
derivative[dim] = this->m_Interpolator->EvaluateAtContinuousIndex(neighIndex);
neighIndex[dim] -= static_cast<ContinuousIndexValueType>(2.0);
derivative[dim] -= this->m_Interpolator->EvaluateAtContinuousIndex(neighIndex);
derivative[dim] *= static_cast<ContinuousIndexValueType>(0.5) / inputImage->GetSpacing()[dim];
neighIndex[dim] += static_cast<ContinuousIndexValueType>(1.0);
}
if ( this->m_UseImageDirection )
{
inputImage->TransformLocalVectorToPhysicalVector(derivative, orientedDerivative);
}
else
{
orientedDerivative = derivative;
}
}
/*
* Specialized for vector pixels
*/
template< typename TInputImage, typename TCoordRep, typename TOutputType >
template< typename Type >
void
CentralDifferenceImageFunction< TInputImage, TCoordRep, TOutputType >
::EvaluateAtContinuousIndexSpecialized(const ContinuousIndexType & cindex, OutputType & derivative, OutputTypeSpecializationStructType<Type>) const
{
typedef typename OutputType::ValueType DerivativeValueType;
typedef typename ContinuousIndexType::ValueType ContinuousIndexValueType;
const InputImageType *inputImage = this->GetInputImage();
const unsigned int numberComponents = inputImage->GetNumberOfComponentsPerPixel();
ContinuousIndexType neighIndex = cindex;
const typename InputImageType::RegionType & region = inputImage->GetBufferedRegion();
const typename InputImageType::SizeType & size = region.GetSize();
const typename InputImageType::IndexType & start = region.GetIndex();
typedef typename InputImageType::PixelType PixelType;
PixelType neighPixels[Self::ImageDimension][2];
bool dimOutOfBounds[Self::ImageDimension];
const unsigned int MaxDims = Self::ImageDimension;
PixelType zeroPixel = NumericTraits<PixelType>::ZeroValue();
for ( unsigned int dim = 0; dim < MaxDims; dim++ )
{
// initialize to quiet compiler warnings
neighPixels[dim][0] = zeroPixel;
neighPixels[dim][1] = zeroPixel;
// bounds checking
dimOutOfBounds[dim] = ( ( cindex[dim] < static_cast<ContinuousIndexValueType>(start[dim] + 1) )
|| cindex[dim] > static_cast<ContinuousIndexValueType> ( start[dim] + static_cast< OffsetValueType >( size[dim] ) - 2 ) );
}
for ( unsigned int nc = 0; nc < numberComponents; nc++)
{
ScalarDerivativeType componentDerivative;
ScalarDerivativeType componentDerivativeOut;
for ( unsigned int dim = 0; dim < MaxDims; dim++ )
{
if( dimOutOfBounds[dim] )
{
componentDerivative[dim] = NumericTraits<DerivativeValueType>::ZeroValue();
continue;
}
// get pixels
if( nc == 0 )
{
neighIndex[dim] += static_cast<ContinuousIndexValueType>(1.0);
neighPixels[dim][0] = this->m_Interpolator->EvaluateAtContinuousIndex(neighIndex);
neighIndex[dim] -= static_cast<ContinuousIndexValueType>(2.0);
neighPixels[dim][1] = this->m_Interpolator->EvaluateAtContinuousIndex(neighIndex);
neighIndex[dim] += static_cast<ContinuousIndexValueType>(1.0);
}
// compute derivative
componentDerivative[dim] = InputPixelConvertType::GetNthComponent(nc, neighPixels[dim][0] );
componentDerivative[dim] -= InputPixelConvertType::GetNthComponent(nc, neighPixels[dim][1] );
componentDerivative[dim] *= static_cast<ContinuousIndexValueType>(0.5) / inputImage->GetSpacing()[dim];
}
if ( this->m_UseImageDirection )
{
inputImage->TransformLocalVectorToPhysicalVector(componentDerivative, componentDerivativeOut);
for ( unsigned int dim = 0; dim < MaxDims; dim++ )
{
OutputConvertType::SetNthComponent( nc * MaxDims + dim, derivative, componentDerivativeOut[dim] );
}
}
else
{
for ( unsigned int dim = 0; dim < MaxDims; dim++ )
{
OutputConvertType::SetNthComponent( nc * MaxDims + dim, derivative, componentDerivative[dim] );
}
}
}
}
} // end namespace itk
#endif
|