This file is indexed.

/usr/include/ITK-4.5/itkChiSquareDistribution.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkChiSquareDistribution_h
#define __itkChiSquareDistribution_h

#include "itkProbabilityDistribution.h"
#include "itkNumericTraits.h"

namespace itk
{
namespace Statistics
{
/** \class ChiSquareDistribution
 * \brief ChiSquareDistribution class defines the interface for a
 * univariate Chi-Square distribution (pdfs, cdfs, etc.).
 *
 * ChiSquareDistribution provides access to the probability density
 * function (pdf), the cumulative distribution function (cdf), and the
 * inverse cumulative distribution function for a Chi-Square distribution.
 *
 * The EvaluatePDF(), EvaluateCDF, EvaluateInverseCDF() methods are
 * all virtual, allowing algorithms to be written with an abstract
 * interface to a distribution (with said distribution provided to the
 * algorithm at run-time).  Static methods, not requiring an instance
 * of the distribution, are also provided.  The static methods allow
 * for optimized access to distributions when the distribution is
 * known a priori to the algorithm.
 *
 * ChiSquareDistributions are univariate.  Multivariate versions may
 * be provided under a separate superclass (since the parameters to the
 * pdf and cdf would have to be vectors not scalars).
 *
 * ChiSquareDistributions can be used for Chi-Square tests.
 *
 * \note This work is part of the National Alliance for Medical Image
 * Computing (NAMIC), funded by the National Institutes of Health
 * through the NIH Roadmap for Medical Research, Grant U54 EB005149.
 * Information on the National Centers for Biomedical Computing
 * can be obtained from http://commonfund.nih.gov/bioinformatics.
 * \ingroup ITKStatistics
 */
class ChiSquareDistribution:
  public ProbabilityDistribution
{
public:
  /** Standard class typedefs */
  typedef ChiSquareDistribution      Self;
  typedef ProbabilityDistribution    Superclass;
  typedef SmartPointer< Self >       Pointer;
  typedef SmartPointer< const Self > ConstPointer;

  /** Strandard macros */
  itkTypeMacro(ChiSquareDistribution, ProbabilityDistribution);

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Return the number of parameters.  For a Chi-Square
   * distribution, the number of parameters is 1 (degrees of freedom) */
  virtual SizeValueType GetNumberOfParameters() const { return 1; }

  /** Evaluate the probability density function (pdf). The parameters
   * of the distribution are  assigned via SetParameters().  */
  virtual double EvaluatePDF(double x) const;

  /** Evaluate the probability density function (pdf). The parameters
   * for the distribution are passed as a parameters vector. The
   * ordering of the parameters is (degrees of freedom). */
  virtual double EvaluatePDF(double x, const ParametersType &) const;

  /** Evaluate the probability density function (pdf). The parameters
   * of the distribution are passed as separate parameters. */
  virtual double EvaluatePDF(double x, SizeValueType degreesOfFreedom) const;

  /** Evaluate the cumulative distribution function (cdf). The parameters
   * of the distribution are  assigned via SetParameters().  */
  virtual double EvaluateCDF(double x) const;

  /** Evaluate the cumulative distribution function (cdf). The parameters
   * for the distribution are passed as a parameters vector. The
   * ordering of the parameters is (degreesOfFreedom). */
  virtual double EvaluateCDF(double x, const ParametersType &) const;

  /** Evaluate the cumulative distribution function (cdf). The parameters
   * of the distribution are passed as separate parameters. */
  virtual double EvaluateCDF(double x, SizeValueType degreesOfFreedom) const;

  /** Evaluate the inverse cumulative distribution function (inverse
   * cdf).  Parameter p must be between 0.0 and 1.0. The parameters
   * of the distribution are  assigned via SetParameters().  */
  virtual double EvaluateInverseCDF(double p) const;

  /** Evaluate the inverse cumulative distribution function (inverse
   * cdf).  Parameter p must be between 0.0 and 1.0.  The parameters
   * for the distribution are passed as a parameters vector. The
   * ordering of the parameters is (degrees of freedom). */
  virtual double EvaluateInverseCDF(double p, const ParametersType &) const;

  /** Evaluate the inverse cumulative distribution function (inverse
   * cdf).  Parameter p must be between 0.0 and 1.0.  The parameters
   * of the distribution are passed as separate parameters. */
  virtual double EvaluateInverseCDF(double p, SizeValueType degreesOfFreedom) const;

  /** Set the number of degrees of freedom in the Chi-Square distribution.
   * Defaults to 1 */
  virtual void SetDegreesOfFreedom(SizeValueType);

  /** Get the number of degrees of freedom in the t
   * distribution. Defaults to 1 */
  virtual SizeValueType GetDegreesOfFreedom() const;

  /** Does the Chi-Square distribution have a mean? */
  virtual bool HasMean() const { return true; }

  /** Get the mean of the distribution. */
  virtual double GetMean() const;

  /** Does the Chi-Square distribution have a variance? */
  virtual bool HasVariance() const { return true; }

  /** Get the variance of the distribution. */
  virtual double GetVariance() const;

  /** Static method to evaluate the probability density function (pdf)
   * of a Chi-Square with a specified number of degrees of freedom. The
   * static method provides optimized access without requiring an
   * instance of the class. The degrees of freedom for the
   * distribution are passed in a parameters vector. */
  static double PDF(double x, const ParametersType &);

  /** Static method to evaluate the probability density function (pdf)
   * of a Chi-Square with a specified number of degrees of freedom. The
   * static method provides optimized access without requiring an
   * instance of the class. */
  static double PDF(double x, SizeValueType degreesOfFreedom);

  /** Static method to evaluate the cumulative distribution function
   * (cdf) of a Chi-Square with a specified number of degrees of
   * freedom. The static method provides optimized access without
   * requiring an instance of the class. The degrees of freedom are
   * passed as a parameters vector.
   *
   * This is based on Abramowitz and Stegun 26.7.1. Accuracy is
   * approximately 10^-14.
   */
  static double CDF(double x, const ParametersType &);

  /** Static method to evaluate the cumulative distribution function
   * (cdf) of a Chi-Square with a specified number of degrees of
   * freedom. The static method provides optimized access without
   * requiring an instance of the class.
   *
   * This is based on Abramowitz and Stegun 26.7.1. Accuracy is
   * approximately 10^-14.
   */
  static double CDF(double x, SizeValueType degreesOfFreedom);

  /** Static method to evaluate the inverse cumulative distribution
   * function of a Chi-Square with a specified number of degrees of
   * freedom.  The static method provides optimized access without
   * requiring an instance of the class. Parameter p must be between
   * 0.0 and 1.0. The degrees of freedom are passed as a parameters vector.
   *
   * This is based on Abramowitz and Stegun 26.7.5 followed by a few
   * Newton iterations to improve the precision at low degrees of
   * freedom. Accuracy is approximately 10^-10.
   **/
  static double InverseCDF(double p, const ParametersType &);

  /** Static method to evaluate the inverse cumulative distribution
   * function of a Chi-Square with a specified number of degrees of
   * freedom.  The static method provides optimized access without
   * requiring an instance of the class. Parameter p must be between
   * 0.0 and 1.0.
   *
   * This is based on Abramowitz and Stegun 26.7.5 followed by a few
   * Newton iterations to improve the precision at low degrees of
   * freedom. Accuracy is approximately 10^-10.
   **/
  static double InverseCDF(double p, SizeValueType degreesOfFreedom);

protected:
  ChiSquareDistribution(void);
  virtual ~ChiSquareDistribution(void) {}

  void PrintSelf(std::ostream & os, Indent indent) const;

private:
  ChiSquareDistribution(const Self &); //purposely not implemented
  void operator=(const Self &);        //purposely not implemented
};                                     // end of class
} // end of namespace Statistics
} // end namespace itk

#endif