/usr/include/ITK-4.5/itkCompositeTransform.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkCompositeTransform_h
#define __itkCompositeTransform_h
#include "itkMultiTransform.h"
#include <deque>
namespace itk
{
/** \class CompositeTransform
* \brief This class contains a list of transforms and concatenates them by composition.
*
* This class concatenates transforms in \b reverse \b queue order by means of composition:
* \f$ T_0 o T_1 = T_0(T_1(x)) \f$
* Transforms are stored in a container (queue), in the following order:
* \f$ T_0, T_1, ... , T_N-1 \f$
* Transforms are added via a single method, AddTransform(). This adds the
* transforms to the back of the queue. A single method for adding transforms
* is meant to simplify the interface and prevent errors.
* One use of the class is to optimize only a subset of included transforms.
*
* The sub transforms are the same dimensionality as this class.
*
* Example:
* A user wants to optimize two Affine transforms together, then add a
* Deformation Field (DF) transform, and optimize it separately.
* He first adds the two Affines, then runs the optimization and both Affines
* transforms are optimized. Next, he adds the DF transform and calls
* SetOnlyMostRecentTransformToOptimizeOn, which clears the optimization flags
* for both of the affine transforms, and leaves the flag set only for the DF
* transform, since it was the last transform added. Now he runs the
* optimization and only the DF transform is optimized, but the affines are
* included in the transformation during the optimization.
*
* Optimization Flags:
* The m_TransformsToOptimize flags hold one flag for each transform in the
* queue, designating if each transform is to be used for optimization. Note
* that all transforms in the queue are applied in TransformPoint, regardless
* of these flags states'. The methods GetParameters, SetParameters,
* ComputeJacobianWithRespectToParameters, GetTransformCategory,
* GetFixedParameters, and SetFixedParameters all query these
* flags and include only those transforms whose corresponding flag is set.
* Their input or output is a concatenated array of all transforms set for use
* in optimization. The goal is to be able to optimize multiple transforms at
* once, while leaving other transforms fixed. See the above example.
*
* Setting Optimization Flags:
* A transform's optimization flag is set when it is added to the queue, and
* remains set as other transforms are added. The methods
* SetNthTransformToOptimize* and SetAllTransformToOptimize* are used to
* set and clear flags arbitrarily. SetOnlyMostRecentTransformToOptimizeOn is
* a convenience method for setting only the most recently added transform
* for optimization, with the idea that this will be a common practice.
*
* Indexing:
* The index values used in GetNthTransform and
* SetNthTransformToOptimize* and SetAllTransformToOptimize* follow the
* order in which transforms were added. Thus, the first transform added is at
* index 0, the next at index 1, etc.
*
* Inverse:
* The inverse transform is created by retrieving the inverse from each
* sub transform and adding them to a composite transform in reverse order.
* The m_TransformsToOptimizeFlags is copied in reverse for the inverse.
*
* \ingroup ITKTransform
*/
template
<class TScalar = double, unsigned int NDimensions = 3>
class CompositeTransform :
public MultiTransform<TScalar, NDimensions>
{
public:
/** Standard class typedefs. */
typedef CompositeTransform Self;
typedef MultiTransform<TScalar, NDimensions, NDimensions> Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Run-time type information (and related methods). */
itkTypeMacro( CompositeTransform, Transform );
/** New macro for creation of through a Smart Pointer */
itkNewMacro( Self );
/** Sub transform type **/
typedef typename Superclass::TransformType TransformType;
typedef typename Superclass::TransformTypePointer TransformTypePointer;
/** InverseTransform type. */
typedef typename Superclass::InverseTransformBasePointer InverseTransformBasePointer;
/** Scalar type. */
typedef typename Superclass::ScalarType ScalarType;
/** Parameters type. */
typedef typename Superclass::ParametersType ParametersType;
typedef typename Superclass::ParametersValueType ParametersValueType;
/** Derivative type */
typedef typename Superclass::DerivativeType DerivativeType;
/** Jacobian type. */
typedef typename Superclass::JacobianType JacobianType;
/** Transform category type. */
typedef typename Superclass::TransformCategoryType TransformCategoryType;
/** Standard coordinate point type for this class. */
typedef typename Superclass::InputPointType InputPointType;
typedef typename Superclass::OutputPointType OutputPointType;
/** Standard vector type for this class. */
typedef typename Superclass::InputVectorType InputVectorType;
typedef typename Superclass::OutputVectorType OutputVectorType;
/** Standard covariant vector type for this class */
typedef typename Superclass::InputCovariantVectorType InputCovariantVectorType;
typedef typename Superclass::OutputCovariantVectorType OutputCovariantVectorType;
/** Standard vnl_vector type for this class. */
typedef typename Superclass::InputVnlVectorType InputVnlVectorType;
typedef typename Superclass::OutputVnlVectorType OutputVnlVectorType;
/** Standard Vectorpixel type for this class */
typedef typename Superclass::InputVectorPixelType InputVectorPixelType;
typedef typename Superclass::OutputVectorPixelType OutputVectorPixelType;
/** Standard DiffusionTensor3D typedef for this class */
typedef typename Superclass::InputDiffusionTensor3DType InputDiffusionTensor3DType;
typedef typename Superclass::OutputDiffusionTensor3DType OutputDiffusionTensor3DType;
/** Standard SymmetricSecondRankTensor typedef for this class */
typedef typename Superclass::InputSymmetricSecondRankTensorType InputSymmetricSecondRankTensorType;
typedef typename Superclass::OutputSymmetricSecondRankTensorType OutputSymmetricSecondRankTensorType;
/** Transform queue type */
typedef typename Superclass::TransformQueueType TransformQueueType;
/** The number of parameters defininig this transform. */
typedef typename Superclass::NumberOfParametersType NumberOfParametersType;
/** Optimization flags queue type */
typedef std::deque<bool> TransformsToOptimizeFlagsType;
/** Dimension of the domain spaces. */
itkStaticConstMacro( InputDimension, unsigned int, NDimensions );
itkStaticConstMacro( OutputDimension, unsigned int, NDimensions );
/** Active Transform state manipulation */
virtual void SetNthTransformToOptimize( SizeValueType i, bool state )
{
this->m_TransformsToOptimizeFlags.at(i) = state;
this->Modified();
}
virtual void SetNthTransformToOptimizeOn( SizeValueType i )
{
this->SetNthTransformToOptimize( i, true );
}
virtual void SetNthTransformToOptimizeOff( SizeValueType i )
{
this->SetNthTransformToOptimize( i, false );
}
virtual void SetAllTransformsToOptimize( bool state )
{
this->m_TransformsToOptimizeFlags.assign(
this->m_TransformsToOptimizeFlags.size(), state );
this->Modified();
}
virtual void SetAllTransformsToOptimizeOn()
{
this->SetAllTransformsToOptimize( true );
}
virtual void SetAllTransformsToOptimizeOff()
{
this->SetAllTransformsToOptimize( false );
}
/* With AddTransform() as the only way to add a transform, we
* can have this method to easily allow user to optimize only
* the transform added most recenlty. */
virtual void SetOnlyMostRecentTransformToOptimizeOn()
{
this->SetAllTransformsToOptimize( false );
this->SetNthTransformToOptimizeOn( this->GetNumberOfTransforms() - 1 );
}
/* Get whether the Nth transform is set to be optimzied */
/* NOTE: ambiguous function name here - are we getting if the Nth transform
is set to be optimized, or the Nth of the transforms that are set to be
optimized? */
virtual bool GetNthTransformToOptimize( SizeValueType i ) const
{
return this->m_TransformsToOptimizeFlags.at(i);
}
/** Access optimize flags */
virtual const TransformsToOptimizeFlagsType & GetTransformsToOptimizeFlags() const
{
return this->m_TransformsToOptimizeFlags;
}
virtual void ClearTransformQueue()
{
Superclass::ClearTransformQueue();
this->m_TransformsToOptimizeFlags.clear();
}
/** Returns a boolean indicating whether it is possible or not to compute the
* inverse of this current Transform. If it is possible, then the inverse of
* the transform is returned in the inverseTransform variable passed by the user.
* The inverse consists of the inverse of each sub-transform, in the \b reverse order
* of the forward transforms. */
bool GetInverse( Self *inverse ) const;
virtual InverseTransformBasePointer GetInverseTransform() const;
/** Compute the position of point in the new space.
*
* Transforms are applied starting from the *back* of the
* queue. That is, in reverse order of which they were added, in order
* to work properly with ResampleFilter.
*
* Imagine a user wants to apply an Affine transform followed by a Deformation
* Field (DF) transform. He adds the Affine, then the DF. Because the user
* typically conceptualizes a transformation as being applied from the Moving
* image to the Fixed image, this makes intuitive sense. But since the
* ResampleFilter expects to transform from the Fixed image to the Moving
* image, the transforms are applied in reverse order of addition, i.e. from
* the back of the queue, and thus, DF then Affine.
*/
virtual OutputPointType TransformPoint( const InputPointType & inputPoint ) const;
/** Method to transform a vector. */
using Superclass::TransformVector;
virtual OutputVectorType TransformVector(const InputVectorType &) const;
virtual OutputVnlVectorType TransformVector(const InputVnlVectorType & inputVector) const;
virtual OutputVectorPixelType TransformVector(const InputVectorPixelType & inputVector ) const;
virtual OutputVectorType TransformVector(const InputVectorType & inputVector,
const InputPointType & inputPoint ) const;
virtual OutputVnlVectorType TransformVector(const InputVnlVectorType & inputVector,
const InputPointType & inputPoint ) const;
virtual OutputVectorPixelType TransformVector(const InputVectorPixelType & inputVector,
const InputPointType & inputPoint ) const;
/** Method to transform a CovariantVector. */
using Superclass::TransformCovariantVector;
virtual OutputCovariantVectorType TransformCovariantVector(const InputCovariantVectorType &) const;
virtual OutputVectorPixelType TransformCovariantVector(const InputVectorPixelType &) const;
virtual OutputCovariantVectorType TransformCovariantVector(const InputCovariantVectorType & inputVector,
const InputPointType & inputPoint ) const;
virtual OutputVectorPixelType TransformCovariantVector(const InputVectorPixelType & inputVector,
const InputPointType & inputPoint ) const;
/** Method to transform a DiffusionTensor3D */
using Superclass::TransformDiffusionTensor3D;
virtual OutputDiffusionTensor3DType TransformDiffusionTensor3D(
const InputDiffusionTensor3DType & inputTensor) const;
virtual OutputVectorPixelType TransformDiffusionTensor3D(
const InputVectorPixelType & inputTensor) const;
virtual OutputDiffusionTensor3DType TransformDiffusionTensor3D(
const InputDiffusionTensor3DType & inputTensor,
const InputPointType & inputPoint ) const;
virtual OutputVectorPixelType TransformDiffusionTensor3D(
const InputVectorPixelType & inputTensor,
const InputPointType & inputPoint ) const;
/** Method to transform a SymmetricSecondRankTensor */
using Superclass::TransformSymmetricSecondRankTensor;
virtual OutputSymmetricSecondRankTensorType TransformSymmetricSecondRankTensor(
const InputSymmetricSecondRankTensorType & inputTensor) const;
virtual OutputVectorPixelType TransformSymmetricSecondRankTensor(
const InputVectorPixelType & inputTensor) const;
virtual OutputSymmetricSecondRankTensorType TransformSymmetricSecondRankTensor(
const InputSymmetricSecondRankTensorType & inputTensor,
const InputPointType & inputPoint ) const;
virtual OutputVectorPixelType TransformSymmetricSecondRankTensor(
const InputVectorPixelType & inputTensor,
const InputPointType & inputPoint ) const;
/** Special handling for composite transform. If all transforms
* are linear, then return category Linear. Otherwise if all
* transforms set to optimize are DisplacementFields, then
* return DisplacementField category. */
virtual TransformCategoryType GetTransformCategory() const;
/** Get/Set Parameter functions work on the current list of transforms
that are set to be optimized (active) using the
'Set[Nth|All]TransformToOptimze' routines.
The parameter data from each active transform is
concatenated into a single ParametersType object.
\note The sub-transforms are read in \b reverse queue order,
so the returned array is ordered in the same way. That is,
the last sub-transform to be added is returned first in the
parameter array. This is the opposite of what's done in the
parent MultiTransform class. */
virtual const ParametersType & GetParameters(void) const;
/* SetParameters only for transforms that are set to be optimized
* See GetParameters() for parameter ordering. */
virtual void SetParameters(const ParametersType & p);
/* GetFixedParameters only for transforms that are set to be optimized
* See GetParameters() for parameter ordering. */
virtual const ParametersType & GetFixedParameters(void) const;
/* SetFixedParameters only for transforms that are set to be optimized.
* See GetParameters() for parameter ordering. */
virtual void SetFixedParameters(const ParametersType & fixedParameters);
/* Get total number of parameters for transforms that are set to be
* optimized */
virtual NumberOfParametersType GetNumberOfParameters(void) const;
/* Get total number of local parameters for transforms that are set
* to be optimized */
virtual NumberOfParametersType GetNumberOfLocalParameters(void) const;
/* Get total number of fixed parameters for transforms that are set
* to be optimized */
virtual NumberOfParametersType GetNumberOfFixedParameters(void) const;
/** Update the transform's parameters by the values in \c update.
* See GetParameters() for parameter ordering. */
virtual void UpdateTransformParameters( const DerivativeType & update, ScalarType factor = 1.0 );
/**
* Flatten the transform queue such that there are no nested composite transforms.
*/
virtual void FlattenTransformQueue();
/**
* Compute the Jacobian with respect to the parameters for the compositie
* transform using Jacobian rule. See comments in the implementation.
*/
virtual void ComputeJacobianWithRespectToParameters(const InputPointType & p, JacobianType & j) const;
protected:
CompositeTransform();
virtual ~CompositeTransform();
void PrintSelf( std::ostream& os, Indent indent ) const;
/** Clone the current transform */
virtual typename LightObject::Pointer InternalClone() const;
virtual void PushFrontTransform( TransformTypePointer t )
{
Superclass::PushFrontTransform( t );
/* Add element to list of flags, and set true by default */
this->m_TransformsToOptimizeFlags.push_front( true );
}
virtual void PushBackTransform( TransformTypePointer t )
{
Superclass::PushBackTransform( t );
/* Add element to list of flags, and set true by default */
this->m_TransformsToOptimizeFlags.push_back( true );
}
virtual void PopFrontTransform()
{
Superclass::PopFrontTransform();
this->m_TransformsToOptimizeFlags.pop_front();
}
virtual void PopBackTransform()
{
Superclass::PopBackTransform();
this->m_TransformsToOptimizeFlags.pop_back();
}
/** Get a list of transforms to optimize. Helper function. */
TransformQueueType & GetTransformsToOptimizeQueue() const;
mutable TransformQueueType m_TransformsToOptimizeQueue;
mutable TransformsToOptimizeFlagsType m_TransformsToOptimizeFlags;
private:
CompositeTransform( const Self & ); // purposely not implemented
void operator=( const Self & ); // purposely not implemented
mutable ModifiedTimeType m_PreviousTransformsToOptimizeUpdateTime;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkCompositeTransform.hxx"
#endif
#endif // __itkCompositeTransform_h
|