/usr/include/ITK-4.5/itkCovarianceImageFunction.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkCovarianceImageFunction_hxx
#define __itkCovarianceImageFunction_hxx
#include "itkCovarianceImageFunction.h"
#include "itkMatrix.h"
#include "itkConstNeighborhoodIterator.h"
namespace itk
{
/**
* Constructor
*/
template< typename TInputImage, typename TCoordRep >
CovarianceImageFunction< TInputImage, TCoordRep >
::CovarianceImageFunction()
{
m_NeighborhoodRadius = 1;
}
/**
*
*/
template< typename TInputImage, typename TCoordRep >
void
CovarianceImageFunction< TInputImage, TCoordRep >
::PrintSelf(std::ostream & os, Indent indent) const
{
this->Superclass::PrintSelf(os, indent);
os << indent << "NeighborhoodRadius: " << m_NeighborhoodRadius << std::endl;
}
/**
*
*/
template< typename TInputImage, typename TCoordRep >
typename CovarianceImageFunction< TInputImage, TCoordRep >
::RealType
CovarianceImageFunction< TInputImage, TCoordRep >
::EvaluateAtIndex(const IndexType & index) const
{
typedef typename TInputImage::PixelType PixelType;
typedef typename PixelType::ValueType PixelComponentType;
typedef typename NumericTraits< PixelComponentType >::RealType PixelComponentRealType;
if ( !this->GetInputImage() )
{
itkExceptionMacro(<< "No image connected to CovarianceImageFunction");
}
const unsigned int VectorDimension = this->GetInputImage()->GetNumberOfComponentsPerPixel();
RealType covariance = RealType(VectorDimension, VectorDimension);
if ( !this->IsInsideBuffer(index) )
{
covariance.fill( NumericTraits< PixelComponentRealType >::max() );
return covariance;
}
covariance.fill(NumericTraits< PixelComponentRealType >::Zero);
typedef vnl_vector< PixelComponentRealType > MeanVectorType;
MeanVectorType mean = MeanVectorType(VectorDimension);
mean.fill(NumericTraits< PixelComponentRealType >::Zero);
// Create an N-d neighborhood kernel, using a zeroflux boundary condition
typename InputImageType::SizeType kernelSize;
kernelSize.Fill(m_NeighborhoodRadius);
ConstNeighborhoodIterator< InputImageType >
it( kernelSize, this->GetInputImage(), this->GetInputImage()->GetBufferedRegion() );
// Set the iterator at the desired location
it.SetLocation(index);
// Walk the neighborhood
const unsigned int size = it.Size();
for ( unsigned int i = 0; i < size; ++i )
{
const PixelType pixel = it.GetPixel(i);
for ( unsigned int dimx = 0; dimx < VectorDimension; dimx++ )
{
mean[dimx] += pixel[dimx];
for ( unsigned int dimy = 0; dimy < VectorDimension; dimy++ )
{
covariance[dimx][dimy] +=
static_cast< PixelComponentRealType >( pixel[dimx] )
* static_cast< PixelComponentRealType >( pixel[dimy] );
}
}
}
const PixelComponentRealType rsize =
static_cast< PixelComponentRealType >( size );
mean /= rsize;
for ( unsigned int dimx = 0; dimx < VectorDimension; dimx++ )
{
for ( unsigned int dimy = 0; dimy < VectorDimension; dimy++ )
{
covariance[dimx][dimy] /= rsize;
covariance[dimx][dimy] -= mean[dimx] * mean[dimy];
}
}
return ( covariance );
}
} // end namespace itk
#endif
|