/usr/include/ITK-4.5/itkCurvatureNDAnisotropicDiffusionFunction.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkCurvatureNDAnisotropicDiffusionFunction_hxx
#define __itkCurvatureNDAnisotropicDiffusionFunction_hxx
#include "itkCurvatureNDAnisotropicDiffusionFunction.h"
namespace itk
{
template< typename TImage >
double CurvatureNDAnisotropicDiffusionFunction< TImage >
::m_MIN_NORM = 1.0e-10;
template< typename TImage >
CurvatureNDAnisotropicDiffusionFunction< TImage >
::CurvatureNDAnisotropicDiffusionFunction()
{
unsigned int i, j;
RadiusType r;
for ( i = 0; i < ImageDimension; ++i )
{
r[i] = 1;
}
this->SetRadius(r);
// Dummy neighborhood used to set up the slices.
Neighborhood< PixelType, ImageDimension > it;
it.SetRadius(r);
// Slice the neighborhood
m_Center = it.Size() / 2;
for ( i = 0; i < ImageDimension; ++i )
{
m_Stride[i] = it.GetStride(i);
x_slice[i] = std::slice(m_Center - m_Stride[i], 3, m_Stride[i]);
}
for ( i = 0; i < ImageDimension; ++i )
{
for ( j = 0; j < ImageDimension; ++j )
{
// For taking derivatives in the i direction that are offset one
// pixel in the j direction.
xa_slice[i][j] =
std::slice( ( m_Center + m_Stride[j] ) - m_Stride[i], 3, m_Stride[i] );
xd_slice[i][j] =
std::slice( ( m_Center - m_Stride[j] ) - m_Stride[i], 3, m_Stride[i] );
}
}
// Allocate the derivative operator.
dx_op.SetDirection(0); // Not relevant, will be applied in a slice-based
// fashion.
dx_op.SetOrder(1);
dx_op.CreateDirectional();
}
template< typename TImage >
typename CurvatureNDAnisotropicDiffusionFunction< TImage >::PixelType
CurvatureNDAnisotropicDiffusionFunction< TImage >
::ComputeUpdate( const NeighborhoodType & it, void *itkNotUsed(globalData),
const FloatOffsetType & itkNotUsed(offset) )
{
unsigned int i, j;
double speed, dx_forward_Cn, dx_backward_Cn, propagation_gradient;
double grad_mag_sq, grad_mag_sq_d, grad_mag, grad_mag_d;
double Cx, Cxd;
double dx_forward[ImageDimension];
double dx_backward[ImageDimension];
double dx[ImageDimension];
double dx_aug;
double dx_dim;
// Calculate the partial derivatives for each dimension
for ( i = 0; i < ImageDimension; i++ )
{
// ``Half'' derivatives
dx_forward[i] = it.GetPixel(m_Center + m_Stride[i])
- it.GetPixel(m_Center);
dx_forward[i] *= this->m_ScaleCoefficients[i];
dx_backward[i] = it.GetPixel(m_Center)
- it.GetPixel(m_Center - m_Stride[i]);
dx_backward[i] *= this->m_ScaleCoefficients[i];
// Centralized differences
dx[i] = m_InnerProduct(x_slice[i], it, dx_op);
dx[i] *= this->m_ScaleCoefficients[i];
}
speed = 0.0;
for ( i = 0; i < ImageDimension; i++ )
{
// Gradient magnitude approximations
grad_mag_sq = dx_forward[i] * dx_forward[i];
grad_mag_sq_d = dx_backward[i] * dx_backward[i];
for ( j = 0; j < ImageDimension; j++ )
{
if ( j != i )
{
dx_aug = m_InnerProduct(xa_slice[j][i], it, dx_op);
dx_aug *= this->m_ScaleCoefficients[j];
dx_dim = m_InnerProduct(xd_slice[j][i], it, dx_op);
dx_dim *= this->m_ScaleCoefficients[j];
grad_mag_sq += 0.25f * ( dx[j] + dx_aug ) * ( dx[j] + dx_aug );
grad_mag_sq_d += 0.25f * ( dx[j] + dx_dim ) * ( dx[j] + dx_dim );
}
}
grad_mag = vcl_sqrt(m_MIN_NORM + grad_mag_sq);
grad_mag_d = vcl_sqrt(m_MIN_NORM + grad_mag_sq_d);
// Conductance Terms
if ( m_K == 0.0 )
{
Cx = 0.0;
Cxd = 0.0;
}
else
{
Cx = vcl_exp(grad_mag_sq / m_K);
Cxd = vcl_exp(grad_mag_sq_d / m_K);
}
// First order normalized finite-difference conductance products
dx_forward_Cn = ( dx_forward[i] / grad_mag ) * Cx;
dx_backward_Cn = ( dx_backward[i] / grad_mag_d ) * Cxd;
// Second order conductance-modified curvature
speed += ( dx_forward_Cn - dx_backward_Cn );
}
// ``Upwind'' gradient magnitude term
propagation_gradient = 0.0;
if ( speed > 0 )
{
for ( i = 0; i < ImageDimension; i++ )
{
propagation_gradient +=
vnl_math_sqr( vnl_math_min(dx_backward[i], 0.0) )
+ vnl_math_sqr( vnl_math_max(dx_forward[i], 0.0) );
}
}
else
{
for ( i = 0; i < ImageDimension; i++ )
{
propagation_gradient +=
vnl_math_sqr( vnl_math_max(dx_backward[i], 0.0) )
+ vnl_math_sqr( vnl_math_min(dx_forward[i], 0.0) );
}
}
return static_cast< PixelType >( vcl_sqrt(propagation_gradient) * speed );
}
} // end namespace itk
#endif
|