This file is indexed.

/usr/include/ITK-4.5/itkDiffusionTensor3D.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkDiffusionTensor3D_hxx
#define __itkDiffusionTensor3D_hxx

#include "itkDiffusionTensor3D.h"
#include "itkNumericTraits.h"

namespace itk
{
/**
 * Default Constructor
 */
template< typename T >
DiffusionTensor3D< T >
::DiffusionTensor3D()
{}

/**
 * Constructor with initialization
 */
template< typename T >
DiffusionTensor3D< T >
::DiffusionTensor3D(const Superclass & r):SymmetricSecondRankTensor< T, 3 >(r)
{}

/**
 * Constructor with initialization
 */
template< typename T >
DiffusionTensor3D< T >
::DiffusionTensor3D(const ComponentType & r):SymmetricSecondRankTensor< T, 3 >(r)
{}

/**
 * Constructor with initialization
 */
template< typename T >
DiffusionTensor3D< T >
::DiffusionTensor3D(const ComponentArrayType r):SymmetricSecondRankTensor< T, 3 >(r)
{}

/**
 * Assignment Operator
 */
template< typename T >
DiffusionTensor3D< T > &
DiffusionTensor3D< T >
::operator=(const ComponentType & r)
{
  Superclass::operator=(r);
  return *this;
}

/**
 * Assignment Operator
 */
template< typename T >
DiffusionTensor3D< T > &
DiffusionTensor3D< T >
::operator=(const ComponentArrayType r)
{
  Superclass::operator=(r);
  return *this;
}

/**
 * Assignment Operator
 */
template< typename T >
DiffusionTensor3D< T > &
DiffusionTensor3D< T >
::operator=(const Superclass & r)
{
  Superclass::operator=(r);
  return *this;
}

/**
 * Get the Trace, specialized version for 3D.
 *
 * Note that the indices are related to the fact
 * that we store only the upper-right triangle of
 * the matrix. Like
 *
 *       | 0  1  2  |
 *       | X  3  4  |
 *       | X  X  5  |
 *
 * The trace is therefore the sum of the components
 * M[0], M[3] and M[5].
 *
 */
template< typename T >
typename DiffusionTensor3D< T >::AccumulateValueType
DiffusionTensor3D< T >
::GetTrace() const
{
  AccumulateValueType trace = ( *this )[0];

  trace += ( *this )[3];
  trace += ( *this )[5];
  return trace;
}

/**
 *  Compute the value of fractional anisotropy
 */
template< typename T >
typename DiffusionTensor3D< T >::RealValueType
DiffusionTensor3D< T >
::GetFractionalAnisotropy() const
{
  // Computed as
  // FA = vcl_sqrt(1.5*sum(sum(N.*N))/sum((sum(D.*D))))
  // where N = D - ((1/3)*trace(D)*eye(3,3))
  // equation (28) in
  // http://lmi.bwh.harvard.edu/papers/pdfs/2002/westinMEDIA02.pdf
  const RealValueType isp   = this->GetInnerScalarProduct();

  if ( isp > 0.0 )
    {
    const RealValueType trace = this->GetTrace();
    const RealValueType anisotropy = 3.0 * isp - trace * trace;
    // sometimes anisotropy has been reported to be a small negative
    // number, and then vcl_sqrt returns NaN.  If it is a small
    // negative number, the obvious thing is to round to zero. If
    // it is a larger negative number, I'm not sure what the proper
    // result would be.  In either case, returning zero makes as much
    // sense in those cases as any other number.
    if(anisotropy > 0.0)
      {
      const RealValueType fractionalAnisotropy =
        static_cast< RealValueType >( vcl_sqrt( anisotropy / ( 2.0 * isp ) ) );
      return fractionalAnisotropy;
      }
    }

  return 0.0;
}

/**
 *  Compute the value of relative anisotropy
 */
template< typename T >
typename DiffusionTensor3D< T >::RealValueType
DiffusionTensor3D< T >
::GetRelativeAnisotropy() const
{
  const RealValueType trace = this->GetTrace();
  const RealValueType isp   = this->GetInnerScalarProduct();

  // Avoid negative trace and traces small enough to look like a division by
  // zero.
  if ( trace < NumericTraits< RealValueType >::min() )
    {
    return NumericTraits< RealValueType >::Zero;
    }

  const RealValueType anisotropy = 3.0 * isp - trace * trace;

  if ( anisotropy  < NumericTraits< RealValueType >::Zero )
    {
    return NumericTraits< RealValueType >::Zero;
    }

  const RealValueType relativeAnisotropySquared =
    static_cast< RealValueType >( anisotropy / ( vcl_sqrt(3.0) * trace ) );

  const RealValueType relativeAnisotropy =
    static_cast< RealValueType >( vcl_sqrt(relativeAnisotropySquared) );

  return relativeAnisotropy;
}

/**
 *  Compute the inner scalar product
 */
template< typename T >
typename DiffusionTensor3D< T >::RealValueType
DiffusionTensor3D< T >
::GetInnerScalarProduct() const
{
  const RealValueType xx = ( *this )[0];
  const RealValueType xy = ( *this )[1];
  const RealValueType xz = ( *this )[2];
  const RealValueType yy = ( *this )[3];
  const RealValueType yz = ( *this )[4];
  const RealValueType zz = ( *this )[5];

  return ( xx * xx + yy * yy + zz * zz + 2.0 * ( xy * xy + xz * xz + yz * yz ) );
}
} // end namespace itk

#endif