/usr/include/ITK-4.5/itkDiffusionTensor3D.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkDiffusionTensor3D_hxx
#define __itkDiffusionTensor3D_hxx
#include "itkDiffusionTensor3D.h"
#include "itkNumericTraits.h"
namespace itk
{
/**
* Default Constructor
*/
template< typename T >
DiffusionTensor3D< T >
::DiffusionTensor3D()
{}
/**
* Constructor with initialization
*/
template< typename T >
DiffusionTensor3D< T >
::DiffusionTensor3D(const Superclass & r):SymmetricSecondRankTensor< T, 3 >(r)
{}
/**
* Constructor with initialization
*/
template< typename T >
DiffusionTensor3D< T >
::DiffusionTensor3D(const ComponentType & r):SymmetricSecondRankTensor< T, 3 >(r)
{}
/**
* Constructor with initialization
*/
template< typename T >
DiffusionTensor3D< T >
::DiffusionTensor3D(const ComponentArrayType r):SymmetricSecondRankTensor< T, 3 >(r)
{}
/**
* Assignment Operator
*/
template< typename T >
DiffusionTensor3D< T > &
DiffusionTensor3D< T >
::operator=(const ComponentType & r)
{
Superclass::operator=(r);
return *this;
}
/**
* Assignment Operator
*/
template< typename T >
DiffusionTensor3D< T > &
DiffusionTensor3D< T >
::operator=(const ComponentArrayType r)
{
Superclass::operator=(r);
return *this;
}
/**
* Assignment Operator
*/
template< typename T >
DiffusionTensor3D< T > &
DiffusionTensor3D< T >
::operator=(const Superclass & r)
{
Superclass::operator=(r);
return *this;
}
/**
* Get the Trace, specialized version for 3D.
*
* Note that the indices are related to the fact
* that we store only the upper-right triangle of
* the matrix. Like
*
* | 0 1 2 |
* | X 3 4 |
* | X X 5 |
*
* The trace is therefore the sum of the components
* M[0], M[3] and M[5].
*
*/
template< typename T >
typename DiffusionTensor3D< T >::AccumulateValueType
DiffusionTensor3D< T >
::GetTrace() const
{
AccumulateValueType trace = ( *this )[0];
trace += ( *this )[3];
trace += ( *this )[5];
return trace;
}
/**
* Compute the value of fractional anisotropy
*/
template< typename T >
typename DiffusionTensor3D< T >::RealValueType
DiffusionTensor3D< T >
::GetFractionalAnisotropy() const
{
// Computed as
// FA = vcl_sqrt(1.5*sum(sum(N.*N))/sum((sum(D.*D))))
// where N = D - ((1/3)*trace(D)*eye(3,3))
// equation (28) in
// http://lmi.bwh.harvard.edu/papers/pdfs/2002/westinMEDIA02.pdf
const RealValueType isp = this->GetInnerScalarProduct();
if ( isp > 0.0 )
{
const RealValueType trace = this->GetTrace();
const RealValueType anisotropy = 3.0 * isp - trace * trace;
// sometimes anisotropy has been reported to be a small negative
// number, and then vcl_sqrt returns NaN. If it is a small
// negative number, the obvious thing is to round to zero. If
// it is a larger negative number, I'm not sure what the proper
// result would be. In either case, returning zero makes as much
// sense in those cases as any other number.
if(anisotropy > 0.0)
{
const RealValueType fractionalAnisotropy =
static_cast< RealValueType >( vcl_sqrt( anisotropy / ( 2.0 * isp ) ) );
return fractionalAnisotropy;
}
}
return 0.0;
}
/**
* Compute the value of relative anisotropy
*/
template< typename T >
typename DiffusionTensor3D< T >::RealValueType
DiffusionTensor3D< T >
::GetRelativeAnisotropy() const
{
const RealValueType trace = this->GetTrace();
const RealValueType isp = this->GetInnerScalarProduct();
// Avoid negative trace and traces small enough to look like a division by
// zero.
if ( trace < NumericTraits< RealValueType >::min() )
{
return NumericTraits< RealValueType >::Zero;
}
const RealValueType anisotropy = 3.0 * isp - trace * trace;
if ( anisotropy < NumericTraits< RealValueType >::Zero )
{
return NumericTraits< RealValueType >::Zero;
}
const RealValueType relativeAnisotropySquared =
static_cast< RealValueType >( anisotropy / ( vcl_sqrt(3.0) * trace ) );
const RealValueType relativeAnisotropy =
static_cast< RealValueType >( vcl_sqrt(relativeAnisotropySquared) );
return relativeAnisotropy;
}
/**
* Compute the inner scalar product
*/
template< typename T >
typename DiffusionTensor3D< T >::RealValueType
DiffusionTensor3D< T >
::GetInnerScalarProduct() const
{
const RealValueType xx = ( *this )[0];
const RealValueType xy = ( *this )[1];
const RealValueType xz = ( *this )[2];
const RealValueType yy = ( *this )[3];
const RealValueType yz = ( *this )[4];
const RealValueType zz = ( *this )[5];
return ( xx * xx + yy * yy + zz * zz + 2.0 * ( xy * xy + xz * xz + yz * yz ) );
}
} // end namespace itk
#endif
|