This file is indexed.

/usr/include/ITK-4.5/itkESMDemonsRegistrationFunction.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkESMDemonsRegistrationFunction_hxx
#define __itkESMDemonsRegistrationFunction_hxx

#include "itkESMDemonsRegistrationFunction.h"
#include "itkExceptionObject.h"
#include "vnl/vnl_math.h"

namespace itk
{
/**
 * Default constructor
 */
template< typename TFixedImage, typename TMovingImage, typename TDisplacementField >
ESMDemonsRegistrationFunction< TFixedImage, TMovingImage, TDisplacementField >
::ESMDemonsRegistrationFunction()
{
  RadiusType   r;
  unsigned int j;

  for ( j = 0; j < ImageDimension; j++ )
    {
    r[j] = 0;
    }
  this->SetRadius(r);

  m_TimeStep = 1.0;
  m_DenominatorThreshold = 1e-9;
  m_IntensityDifferenceThreshold = 0.001;
  m_MaximumUpdateStepLength = 0.5;

  this->SetMovingImage(NULL);
  this->SetFixedImage(NULL);
  m_FixedImageSpacing.Fill(1.0);
  m_FixedImageOrigin.Fill(0.0);
  m_FixedImageDirection.SetIdentity();
  m_Normalizer = 0.0;
  m_FixedImageGradientCalculator = GradientCalculatorType::New();
  // Gradient orientation will be taken care of explicitely
  m_FixedImageGradientCalculator->UseImageDirectionOff();
  m_MappedMovingImageGradientCalculator = MovingImageGradientCalculatorType::New();
  // Gradient orientation will be taken care of explicitely
  m_MappedMovingImageGradientCalculator->UseImageDirectionOff();

  this->m_UseGradientType = Symmetric;

  typename DefaultInterpolatorType::Pointer interp =
    DefaultInterpolatorType::New();

  m_MovingImageInterpolator = itkDynamicCastInDebugMode< InterpolatorType * >
    ( interp.GetPointer() );

  m_MovingImageWarper = WarperType::New();
  m_MovingImageWarper->SetInterpolator(m_MovingImageInterpolator);
  m_MovingImageWarper->SetEdgePaddingValue( NumericTraits< MovingPixelType >::max() );

  m_MovingImageWarperOutput = 0;

  m_Metric = NumericTraits< double >::max();
  m_SumOfSquaredDifference = 0.0;
  m_NumberOfPixelsProcessed = 0L;
  m_RMSChange = NumericTraits< double >::max();
  m_SumOfSquaredChange = 0.0;
}

/*
 * Standard "PrintSelf" method.
 */
template< typename TFixedImage, typename TMovingImage, typename TDisplacementField >
void
ESMDemonsRegistrationFunction< TFixedImage, TMovingImage, TDisplacementField >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "UseGradientType: ";
  os << m_UseGradientType << std::endl;
  os << indent << "MaximumUpdateStepLength: ";
  os << m_MaximumUpdateStepLength << std::endl;

  os << indent << "MovingImageIterpolator: ";
  os << m_MovingImageInterpolator.GetPointer() << std::endl;
  os << indent << "FixedImageGradientCalculator: ";
  os << m_FixedImageGradientCalculator.GetPointer() << std::endl;
  os << indent << "MappedMovingImageGradientCalculator: ";
  os << m_MappedMovingImageGradientCalculator.GetPointer() << std::endl;
  os << indent << "DenominatorThreshold: ";
  os << m_DenominatorThreshold << std::endl;
  os << indent << "IntensityDifferenceThreshold: ";
  os << m_IntensityDifferenceThreshold << std::endl;

  os << indent << "Metric: ";
  os << m_Metric << std::endl;
  os << indent << "SumOfSquaredDifference: ";
  os << m_SumOfSquaredDifference << std::endl;
  os << indent << "NumberOfPixelsProcessed: ";
  os << m_NumberOfPixelsProcessed << std::endl;
  os << indent << "RMSChange: ";
  os << m_RMSChange << std::endl;
  os << indent << "SumOfSquaredChange: ";
  os << m_SumOfSquaredChange << std::endl;
}

/**
 *
 */
template< typename TFixedImage, typename TMovingImage, typename TDisplacementField >
void
ESMDemonsRegistrationFunction< TFixedImage, TMovingImage, TDisplacementField >
::SetIntensityDifferenceThreshold(double threshold)
{
  m_IntensityDifferenceThreshold = threshold;
}

/**
 *
 */
template< typename TFixedImage, typename TMovingImage, typename TDisplacementField >
double
ESMDemonsRegistrationFunction< TFixedImage, TMovingImage, TDisplacementField >
::GetIntensityDifferenceThreshold() const
{
  return m_IntensityDifferenceThreshold;
}

/**
 * Set the function state values before each iteration
 */
template< typename TFixedImage, typename TMovingImage, typename TDisplacementField >
void
ESMDemonsRegistrationFunction< TFixedImage, TMovingImage, TDisplacementField >
::InitializeIteration()
{
  if ( !this->GetMovingImage() || !this->GetFixedImage()
       || !m_MovingImageInterpolator )
    {
    itkExceptionMacro(
      << "MovingImage, FixedImage and/or Interpolator not set");
    }

  // cache fixed image information
  m_FixedImageOrigin  = this->GetFixedImage()->GetOrigin();
  m_FixedImageSpacing = this->GetFixedImage()->GetSpacing();
  m_FixedImageDirection = this->GetFixedImage()->GetDirection();

  // compute the normalizer
  if ( m_MaximumUpdateStepLength > 0.0 )
    {
    m_Normalizer = 0.0;
    for ( unsigned int k = 0; k < ImageDimension; k++ )
      {
      m_Normalizer += m_FixedImageSpacing[k] * m_FixedImageSpacing[k];
      }
    m_Normalizer *= m_MaximumUpdateStepLength * m_MaximumUpdateStepLength
                    / static_cast< double >( ImageDimension );
    }
  else
    {
    // set it to minus one to denote a special case
    // ( unrestricted update length )
    m_Normalizer = -1.0;
    }

  // setup gradient calculator
  m_FixedImageGradientCalculator->SetInputImage( this->GetFixedImage() );
  m_MappedMovingImageGradientCalculator->SetInputImage( this->GetMovingImage() );

  // Compute warped moving image
  m_MovingImageWarper->SetOutputOrigin(this->m_FixedImageOrigin);
  m_MovingImageWarper->SetOutputSpacing(this->m_FixedImageSpacing);
  m_MovingImageWarper->SetOutputDirection(this->m_FixedImageDirection);
  m_MovingImageWarper->SetInput( this->GetMovingImage() );
  m_MovingImageWarper->SetDisplacementField( this->GetDisplacementField() );
  m_MovingImageWarper->GetOutput()->SetRequestedRegion( this->GetDisplacementField()->GetRequestedRegion() );
  m_MovingImageWarper->Update();
  this->m_MovingImageWarperOutput =
    this->m_MovingImageWarper->GetOutput();
  // setup moving image interpolator for further access
  m_MovingImageInterpolator->SetInputImage( this->GetMovingImage() );

  // initialize metric computation variables
  m_SumOfSquaredDifference  = 0.0;
  m_NumberOfPixelsProcessed = 0L;
  m_SumOfSquaredChange      = 0.0;
}

/**
 * Compute update at a non boundary neighbourhood
 */
template< typename TFixedImage, typename TMovingImage, typename TDisplacementField >
typename ESMDemonsRegistrationFunction< TFixedImage, TMovingImage, TDisplacementField >
::PixelType
ESMDemonsRegistrationFunction< TFixedImage, TMovingImage, TDisplacementField >
::ComputeUpdate( const NeighborhoodType & it, void *gd,
                 const FloatOffsetType & itkNotUsed(offset) )
{
  GlobalDataStruct *globalData = (GlobalDataStruct *)gd;
  PixelType         update;
  IndexType         FirstIndex = this->GetFixedImage()->GetLargestPossibleRegion().GetIndex();
  IndexType         LastIndex = this->GetFixedImage()->GetLargestPossibleRegion().GetIndex()
                                + this->GetFixedImage()->GetLargestPossibleRegion().GetSize();

  const IndexType index = it.GetIndex();

  // Get fixed image related information
  // Note: no need to check if the index is within
  // fixed image buffer. This is done by the external filter.
  const double fixedValue = static_cast< double >(
    this->GetFixedImage()->GetPixel(index) );

  // Get moving image related information
  // check if the point was mapped outside of the moving image using
  // the "special value" NumericTraits<MovingPixelType>::max()
  MovingPixelType movingPixValue =
    m_MovingImageWarperOutput->GetPixel(index);

  if ( movingPixValue == NumericTraits< MovingPixelType >::max() )
    {
    update.Fill(0.0);
    return update;
    }

  const double movingValue = static_cast< double >( movingPixValue );

  // We compute the gradient more or less by hand.
  // We first start by ignoring the image orientation and introduce it
  // afterwards
  CovariantVectorType usedOrientFreeGradientTimes2;

  if ( ( this->m_UseGradientType == Symmetric )
       || ( this->m_UseGradientType == WarpedMoving ) )
    {
    // we don't use a CentralDifferenceImageFunction here to be able to
    // check for NumericTraits<MovingPixelType>::max()
    CovariantVectorType warpedMovingGradient;
    IndexType           tmpIndex = index;
    for ( unsigned int dim = 0; dim < ImageDimension; dim++ )
      {
      // bounds checking
      if ( FirstIndex[dim] == LastIndex[dim]
           || index[dim] < FirstIndex[dim]
           || index[dim] >= LastIndex[dim] )
        {
        warpedMovingGradient[dim] = 0.0;
        continue;
        }
      else if ( index[dim] == FirstIndex[dim] )
        {
        // compute derivative
        tmpIndex[dim] += 1;
        movingPixValue = m_MovingImageWarperOutput->GetPixel(tmpIndex);
        if ( movingPixValue == NumericTraits< MovingPixelType >::max() )
          {
          // weird crunched border case
          warpedMovingGradient[dim] = 0.0;
          }
        else
          {
          // forward difference
          warpedMovingGradient[dim] = static_cast< double >( movingPixValue ) - movingValue;
          warpedMovingGradient[dim] /= m_FixedImageSpacing[dim];
          }
        tmpIndex[dim] -= 1;
        continue;
        }
      else if ( index[dim] == ( LastIndex[dim] - 1 ) )
        {
        // compute derivative
        tmpIndex[dim] -= 1;
        movingPixValue = m_MovingImageWarperOutput->GetPixel(tmpIndex);
        if ( movingPixValue == NumericTraits< MovingPixelType >::max() )
          {
          // weird crunched border case
          warpedMovingGradient[dim] = 0.0;
          }
        else
          {
          // backward difference
          warpedMovingGradient[dim] = movingValue - static_cast< double >( movingPixValue );
          warpedMovingGradient[dim] /= m_FixedImageSpacing[dim];
          }
        tmpIndex[dim] += 1;
        continue;
        }

      // compute derivative
      tmpIndex[dim] += 1;
      movingPixValue = m_MovingImageWarperOutput->GetPixel(tmpIndex);
      if ( movingPixValue == NumericTraits
           < MovingPixelType >::max() )
        {
        // backward difference
        warpedMovingGradient[dim] = movingValue;

        tmpIndex[dim] -= 2;
        movingPixValue = m_MovingImageWarperOutput->GetPixel(tmpIndex);
        if ( movingPixValue == NumericTraits< MovingPixelType >::max() )
          {
          // weird crunched border case
          warpedMovingGradient[dim] = 0.0;
          }
        else
          {
          // backward difference
          warpedMovingGradient[dim] -= static_cast< double >(
            m_MovingImageWarperOutput->GetPixel(tmpIndex) );

          warpedMovingGradient[dim] /= m_FixedImageSpacing[dim];
          }
        }
      else
        {
        warpedMovingGradient[dim] = static_cast< double >( movingPixValue );

        tmpIndex[dim] -= 2;
        movingPixValue = m_MovingImageWarperOutput->GetPixel(tmpIndex);
        if ( movingPixValue == NumericTraits< MovingPixelType >::max() )
          {
          // forward difference
          warpedMovingGradient[dim] -= movingValue;
          warpedMovingGradient[dim] /= m_FixedImageSpacing[dim];
          }
        else
          {
          // normal case, central difference
          warpedMovingGradient[dim] -= static_cast< double >( movingPixValue );
          warpedMovingGradient[dim] *= 0.5 / m_FixedImageSpacing[dim];
          }
        }
      tmpIndex[dim] += 1;
      }

    if ( this->m_UseGradientType == Symmetric )
      {
      // Compute orientation-free gradient with calculator
      const CovariantVectorType fixedGradient =
        m_FixedImageGradientCalculator->EvaluateAtIndex(index);

      usedOrientFreeGradientTimes2 = fixedGradient + warpedMovingGradient;
      }
    else if ( this->m_UseGradientType == WarpedMoving )
      {
      usedOrientFreeGradientTimes2 = warpedMovingGradient + warpedMovingGradient;
      }
    else
      {
      itkExceptionMacro(<< "Unknown gradient type");
      }
    }
  else if ( this->m_UseGradientType == Fixed )
    {
    // Compute orientation-free gradient with calculator
    const CovariantVectorType fixedGradient =
      m_FixedImageGradientCalculator->EvaluateAtIndex(index);

    usedOrientFreeGradientTimes2 = fixedGradient + fixedGradient;
    }
  else if ( this->m_UseGradientType == MappedMoving )
    {
    PointType mappedPoint;
    this->GetFixedImage()->TransformIndexToPhysicalPoint(index, mappedPoint);
    for ( unsigned int j = 0; j < ImageDimension; j++ )
      {
      mappedPoint[j] += it.GetCenterPixel()[j];
      }

    const CovariantVectorType mappedMovingGradient =
      m_MappedMovingImageGradientCalculator->Evaluate(mappedPoint);

    usedOrientFreeGradientTimes2 = mappedMovingGradient + mappedMovingGradient;
    }
  else
    {
    itkExceptionMacro(<< "Unknown gradient type");
    }

  CovariantVectorType usedGradientTimes2;
  this->GetFixedImage()->TransformLocalVectorToPhysicalVector(
    usedOrientFreeGradientTimes2, usedGradientTimes2);

  /**
   * Compute Update.
   * We avoid the mismatch in units between the two terms.
   * and avoid large step using a normalization term.
   */

  const double usedGradientTimes2SquaredMagnitude =
    usedGradientTimes2.GetSquaredNorm();

  const double speedValue = fixedValue - movingValue;
  if ( vnl_math_abs(speedValue) < m_IntensityDifferenceThreshold )
    {
    update.Fill(0.0);
    }
  else
    {
    double denom;
    if (  m_Normalizer > 0.0 )
      {
      // "ITK-Thirion" normalization
      denom =  usedGradientTimes2SquaredMagnitude + ( vnl_math_sqr(speedValue) / m_Normalizer );
      }
    else
      {
      // least square solution of the system
      denom =  usedGradientTimes2SquaredMagnitude;
      }

    if ( denom < m_DenominatorThreshold )
      {
      update.Fill(0.0);
      }
    else
      {
      const double factor = 2.0 * speedValue / denom;

      for ( unsigned int j = 0; j < ImageDimension; j++ )
        {
        update[j] = factor * usedGradientTimes2[j];
        }
      }
    }

  // WARNING!! We compute the global data without taking into account the
  // current update step.
  // There are several reasons for that: If an exponential, a smoothing or any
  // other operation
  // is applied on the update field, we cannot compute the newMappedCenterPoint
  // here; and even
  // if we could, this would be an often unnecessary time-consuming task.
  if ( globalData )
    {
    globalData->m_SumOfSquaredDifference += vnl_math_sqr(speedValue);
    globalData->m_NumberOfPixelsProcessed += 1;
    globalData->m_SumOfSquaredChange += update.GetSquaredNorm();
    }

  return update;
}

/**
 * Update the metric and release the per-thread-global data.
 */
template< typename TFixedImage, typename TMovingImage, typename TDisplacementField >
void
ESMDemonsRegistrationFunction< TFixedImage, TMovingImage, TDisplacementField >
::ReleaseGlobalDataPointer(void *gd) const
{
  GlobalDataStruct *globalData = (GlobalDataStruct *)gd;

  m_MetricCalculationLock.Lock();
  m_SumOfSquaredDifference += globalData->m_SumOfSquaredDifference;
  m_NumberOfPixelsProcessed += globalData->m_NumberOfPixelsProcessed;
  m_SumOfSquaredChange += globalData->m_SumOfSquaredChange;
  if ( m_NumberOfPixelsProcessed )
    {
    m_Metric = m_SumOfSquaredDifference
               / static_cast< double >( m_NumberOfPixelsProcessed );
    m_RMSChange = vcl_sqrt( m_SumOfSquaredChange
                            / static_cast< double >( m_NumberOfPixelsProcessed ) );
    }
  m_MetricCalculationLock.Unlock();

  delete globalData;
}
} // end namespace itk

#endif