/usr/include/ITK-4.5/itkElasticBodySplineKernelTransform.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkElasticBodySplineKernelTransform_h
#define __itkElasticBodySplineKernelTransform_h
#include "itkKernelTransform.h"
namespace itk
{
/** \class ElasticBodySplineKernelTransform
* \brief This class defines the elastic body spline (EBS) transformation.
*
* This class defines the elastic body spline (EBS) transformation.
* It is implemented in as straightforward a manner as possible from
* the IEEE TMI paper by Davis, Khotanzad, Flamig, and Harms,
* Vol. 16 No. 3 June 1997
* Taken from the paper:
* The EBS "is based on a physical model of a homogeneous, isotropic,
* three-dimensional elastic body. The model can approximate the way
* that some physical objects deform".
*
* \ingroup ITKTransform
*/
template< typename TScalar = double, // Data type for scalars (float or
// double)
unsigned int NDimensions = 3 >
// Number of dimensions
class ElasticBodySplineKernelTransform:
public KernelTransform< TScalar, NDimensions >
{
public:
/** Standard class typedefs. */
typedef ElasticBodySplineKernelTransform Self;
typedef KernelTransform< TScalar,
NDimensions > Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Run-time type information (and related methods). */
itkTypeMacro(ElasticBodySplineKernelTransform, KernelTransform);
/** New macro for creation of through a Smart Pointer */
itkNewMacro(Self);
/** Scalar type. */
typedef typename Superclass::ScalarType ScalarType;
/** Parameters type. */
typedef typename Superclass::ParametersType ParametersType;
/** Jacobian type. */
typedef typename Superclass::JacobianType JacobianType;
/** Dimension of the domain space. */
itkStaticConstMacro(SpaceDimension, unsigned int, Superclass::SpaceDimension);
/** Set alpha. Alpha is related to Poisson's Ratio (\f$\nu\f$) as
* \f$\alpha = 12 ( 1 - \nu ) - 1\f$
*/
itkSetMacro(Alpha, TScalar);
/** Get alpha */
itkGetConstMacro(Alpha, TScalar);
typedef typename Superclass::InputPointType InputPointType;
typedef typename Superclass::OutputPointType OutputPointType;
typedef typename Superclass::InputVectorType InputVectorType;
typedef typename Superclass::OutputVectorType OutputVectorType;
typedef typename Superclass::InputCovariantVectorType InputCovariantVectorType;
typedef typename Superclass::OutputCovariantVectorType OutputCovariantVectorType;
protected:
ElasticBodySplineKernelTransform();
virtual ~ElasticBodySplineKernelTransform();
void PrintSelf(std::ostream & os, Indent indent) const;
typedef typename Superclass::GMatrixType GMatrixType;
/** Compute G(x)
* For the elastic body spline, this is:
* \f$ G(x) = [alpha*r(x)^2*I - 3*x*x']*r(x) \f$
* \f$ G(x) = [\alpha*r(x)^2*I - 3*x*x']*r(x) \f$
* where
* \f$\alpha = 12 ( 1 - \nu ) - 1\f$
* \f$\nu\f$ is Poisson's Ratio
* \f$ r(x) = Euclidean norm = sqrt[x1^2 + x2^2 + x3^2] \f$
* \f[ r(x) = \sqrt{ x_1^2 + x_2^2 + x_3^2 } \f]
* I = identity matrix
*/
virtual void ComputeG(const InputVectorType & landmarkVector, GMatrixType & gmatrix) const;
/** alpha, Alpha is related to Poisson's Ratio (\f$\nu\f$) as
* \f$ \alpha = 12 ( 1 - \nu ) - 1\f$
*/
TScalar m_Alpha;
private:
ElasticBodySplineKernelTransform(const Self &); //purposely not implemented
void operator=(const Self &); //purposely not implemented
};
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkElasticBodySplineKernelTransform.hxx"
#endif
#endif // __itkElasticBodySplineKernelTransform_h
|