/usr/include/ITK-4.5/itkExhaustiveOptimizer.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkExhaustiveOptimizer_h
#define __itkExhaustiveOptimizer_h
#include "itkIntTypes.h"
#include "itkSingleValuedNonLinearOptimizer.h"
namespace itk
{
/** \class ExhaustiveOptimizer
* \brief Optimizer that fully samples a grid on the parametric space.
*
* This optimizer is equivalent to an exahaustive search in a discrete grid
* defined over the parametric space. The grid is centered on the initial
* position. The subdivisions of the grid along each one of the dimensions
* of the parametric space is defined by an array of number of steps.
*
* A typical use is to plot the metric space to get an idea of how noisy it
* is. An example is given below, where it is desired to plot the metric
* space with respect to translations along x, y and z in a 3D registration
* application:
* Here it is assumed that the transform is Euler3DTransform.
*
* \code
*
* OptimizerType::StepsType steps( m_Transform->GetNumberOfParameters() );
* steps[1] = 10;
* steps[2] = 10;
* steps[3] = 10;
* m_Optimizer->SetNumberOfSteps( steps );
* m_Optimizer->SetStepLength( 2 );
*
* \endcode
*
* The optimizer throws IterationEvents after every iteration. We use this to plot
* the metric space in an image as follows:
*
* \code
*
* if( itk::IterationEvent().CheckEvent(& event ) )
* {
* IndexType index;
* index[0] = m_Optimizer->GetCurrentIndex()[0];
* index[1] = m_Optimizer->GetCurrentIndex()[1];
* index[2] = m_Optimizer->GetCurrentIndex()[2];
* image->SetPixel( index, m_Optimizer->GetCurrentValue() );
* }
*
* \endcode
*
* The image size is expected to be 11 x 11 x 11.
*
* If you wish to use different step lengths along each parametric axis,
* you can use the SetScales() method. This accepts an array, each element
* represents the number of subdivisions per step length. For instance scales
* of [0.5 1 4] along with a step length of 2 will cause the optimizer
* to search the metric space on a grid with x,y,z spacing of [1 2 8].
*
* Physical dimensions of the grid are influenced by both the scales and
* the number of steps along each dimension, a side of the region is
* stepLength*(2*numberOfSteps[d]+1)*scaling[d].
*
* \ingroup Numerics Optimizers
* \ingroup ITKOptimizers
*/
class ExhaustiveOptimizer:
public SingleValuedNonLinearOptimizer
{
public:
/** Standard "Self" typedef. */
typedef ExhaustiveOptimizer Self;
typedef SingleValuedNonLinearOptimizer Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
typedef Array< SizeValueType > StepsType;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(ExhaustiveOptimizer, SingleValuedNonLinearOptimizer);
virtual void StartOptimization(void);
void StartWalking(void);
void ResumeWalking(void);
void StopWalking(void);
itkSetMacro(StepLength, double);
itkSetMacro(NumberOfSteps, StepsType);
itkGetConstReferenceMacro(StepLength, double);
itkGetConstReferenceMacro(NumberOfSteps, StepsType);
itkGetConstReferenceMacro(CurrentValue, MeasureType);
itkGetConstReferenceMacro(MaximumMetricValue, MeasureType);
itkGetConstReferenceMacro(MinimumMetricValue, MeasureType);
itkGetConstReferenceMacro(MinimumMetricValuePosition, ParametersType);
itkGetConstReferenceMacro(MaximumMetricValuePosition, ParametersType);
itkGetConstReferenceMacro(CurrentIndex, ParametersType);
itkGetConstReferenceMacro(MaximumNumberOfIterations, SizeValueType);
/** Get the reason for termination */
const std::string GetStopConditionDescription() const;
protected:
ExhaustiveOptimizer();
virtual ~ExhaustiveOptimizer() {}
void PrintSelf(std::ostream & os, Indent indent) const;
/** Advance to the next grid position. */
void AdvanceOneStep(void);
void IncrementIndex(ParametersType & param);
protected:
MeasureType m_CurrentValue;
StepsType m_NumberOfSteps;
SizeValueType m_CurrentIteration;
bool m_Stop;
unsigned int m_CurrentParameter;
double m_StepLength;
ParametersType m_CurrentIndex;
SizeValueType m_MaximumNumberOfIterations;
MeasureType m_MaximumMetricValue;
MeasureType m_MinimumMetricValue;
ParametersType m_MinimumMetricValuePosition;
ParametersType m_MaximumMetricValuePosition;
private:
//purposely not implemented
ExhaustiveOptimizer(const Self &);
void operator=(const Self &);
std::ostringstream m_StopConditionDescription;
};
} // end namespace itk
#endif
|