/usr/include/ITK-4.5/itkExpectationMaximizationMixtureModelEstimator.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkExpectationMaximizationMixtureModelEstimator_h
#define __itkExpectationMaximizationMixtureModelEstimator_h
#include "itkMixtureModelComponentBase.h"
#include "itkGaussianMembershipFunction.h"
#include "itkSimpleDataObjectDecorator.h"
namespace itk
{
namespace Statistics
{
/** \class ExpectationMaximizationMixtureModelEstimator
* \brief This class generates the parameter estimates for a mixture
* model using expectation maximization strategy.
*
* The first template argument is the type of the target sample
* data. This estimator expects one or more mixture model component
* objects of the classes derived from the
* MixtureModelComponentBase. The actual component (or module)
* parameters are updated by each component. Users can think this
* class as a strategy or a integration point for the EM
* procedure. The initial proportion (SetInitialProportions), the
* input sample (SetSample), the mixture model components
* (AddComponent), and the maximum iteration (SetMaximumIteration) are
* required. The EM procedure terminates when the current iteration
* reaches the maximum iteration or the model parameters converge.
*
* <b>Recent API changes:</b>
* The static const macro to get the length of a measurement vector,
* \c MeasurementVectorSize has been removed to allow the length of a measurement
* vector to be specified at run time. It is now obtained at run time from the
* sample set as input. Please use the function
* GetMeasurementVectorSize() to get the length.
*
* \sa MixtureModelComponentBase, GaussianMixtureModelComponent
* \ingroup ITKStatistics
*
* \wiki
* \wikiexample{Statistics/ExpectationMaximizationMixtureModelEstimator_2D,2D Gaussian Mixture Model Expectation Maximization}
* \endwiki
*/
template< typename TSample >
class ExpectationMaximizationMixtureModelEstimator:public Object
{
public:
/** Standard class typedef */
typedef ExpectationMaximizationMixtureModelEstimator Self;
typedef Object Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Standard macros */
itkTypeMacro(ExpectationMaximizationMixtureModelEstimator,
Object);
itkNewMacro(Self);
/** TSample template argument related typedefs */
typedef TSample SampleType;
typedef typename TSample::MeasurementType MeasurementType;
typedef typename TSample::MeasurementVectorType MeasurementVectorType;
/** Typedef requried to generate dataobject decorated output that can
* be plugged into SampleClassifierFilter */
typedef GaussianMembershipFunction< MeasurementVectorType >
GaussianMembershipFunctionType;
typedef typename GaussianMembershipFunctionType::Pointer
GaussianMembershipFunctionPointer;
typedef MembershipFunctionBase< MeasurementVectorType > MembershipFunctionType;
typedef typename MembershipFunctionType::ConstPointer MembershipFunctionPointer;
typedef std::vector< MembershipFunctionPointer > MembershipFunctionVectorType;
typedef SimpleDataObjectDecorator<
MembershipFunctionVectorType > MembershipFunctionVectorObjectType;
typedef typename
MembershipFunctionVectorObjectType::Pointer MembershipFunctionVectorObjectPointer;
/** Type of the mixture model component base class */
typedef MixtureModelComponentBase< TSample > ComponentType;
/** Type of the component pointer storage */
typedef std::vector< ComponentType * > ComponentVectorType;
/** Type of the membership function base class */
typedef MembershipFunctionBase< MeasurementVectorType >
ComponentMembershipFunctionType;
/** Type of the array of the proportion values */
typedef Array< double > ProportionVectorType;
/** Sets the target data that will be classified by this */
void SetSample(const TSample *sample);
/** Returns the target data */
const TSample * GetSample() const;
/** Set/Gets the initial proportion values. The size of proportion
* vector should be same as the number of component (or classes) */
void SetInitialProportions(ProportionVectorType & propotion);
const ProportionVectorType & GetInitialProportions() const;
/** Gets the result proportion values */
const ProportionVectorType & GetProportions() const;
/** typedef for decorated array of proportion */
typedef SimpleDataObjectDecorator<
ProportionVectorType > MembershipFunctionsWeightsArrayObjectType;
typedef typename
MembershipFunctionsWeightsArrayObjectType::Pointer MembershipFunctionsWeightsArrayPointer;
/** Get method for data decorated Membership functions weights array */
const MembershipFunctionsWeightsArrayObjectType * GetMembershipFunctionsWeightsArray() const;
/** Set/Gets the maximum number of iterations. When the optimization
* process reaches the maximum number of interations, even if the
* class parameters aren't converged, the optimization process
* stops. */
void SetMaximumIteration(int numberOfIterations);
int GetMaximumIteration() const;
/** Gets the current iteration. */
int GetCurrentIteration()
{
return m_CurrentIteration;
}
/** Adds a new component (or class). */
int AddComponent(ComponentType *component);
/** Gets the total number of classes currently plugged in. */
unsigned int GetNumberOfComponents() const;
/** Runs the optimization process. */
void Update();
/** Termination status after running optimization */
enum TERMINATION_CODE { CONVERGED = 0, NOT_CONVERGED = 1 };
/** Gets the termination status */
TERMINATION_CODE GetTerminationCode() const;
/** Gets the membership function specified by componentIndex
argument. */
ComponentMembershipFunctionType * GetComponentMembershipFunction(int componentIndex) const;
/** Output Membership function vector containing the membership functions with
* the final optimized parameters */
const MembershipFunctionVectorObjectType * GetOutput() const;
protected:
ExpectationMaximizationMixtureModelEstimator();
virtual ~ExpectationMaximizationMixtureModelEstimator() {}
void PrintSelf(std::ostream & os, Indent indent) const;
bool CalculateDensities();
double CalculateExpectation() const;
bool UpdateComponentParameters();
bool UpdateProportions();
/** Starts the estimation process */
void GenerateData();
private:
/** Target data sample pointer*/
const TSample *m_Sample;
int m_MaxIteration;
int m_CurrentIteration;
TERMINATION_CODE m_TerminationCode;
ComponentVectorType m_ComponentVector;
ProportionVectorType m_InitialProportions;
ProportionVectorType m_Proportions;
MembershipFunctionVectorObjectPointer m_MembershipFunctionsObject;
MembershipFunctionsWeightsArrayPointer m_MembershipFunctionsWeightArrayObject;
}; // end of class
} // end of namespace Statistics
} // end of namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkExpectationMaximizationMixtureModelEstimator.hxx"
#endif
#endif
|