This file is indexed.

/usr/include/ITK-4.5/itkExpectationMaximizationMixtureModelEstimator.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkExpectationMaximizationMixtureModelEstimator_h
#define __itkExpectationMaximizationMixtureModelEstimator_h

#include "itkMixtureModelComponentBase.h"
#include "itkGaussianMembershipFunction.h"
#include "itkSimpleDataObjectDecorator.h"

namespace itk
{
namespace Statistics
{
/** \class ExpectationMaximizationMixtureModelEstimator
 *  \brief This class generates the parameter estimates for a mixture
 *  model using expectation maximization strategy.
 *
 * The first template argument is the type of the target sample
 * data. This estimator expects one or more mixture model component
 * objects of the classes derived from the
 * MixtureModelComponentBase. The actual component (or module)
 * parameters are updated by each component. Users can think this
 * class as a strategy or a integration point for the EM
 * procedure. The initial proportion (SetInitialProportions), the
 * input sample (SetSample), the mixture model components
 * (AddComponent), and the maximum iteration (SetMaximumIteration) are
 * required. The EM procedure terminates when the current iteration
 * reaches the maximum iteration or the model parameters converge.
 *
 * <b>Recent API changes:</b>
 * The static const macro to get the length of a measurement vector,
 * \c MeasurementVectorSize  has been removed to allow the length of a measurement
 * vector to be specified at run time. It is now obtained at run time from the
 * sample set as input. Please use the function
 * GetMeasurementVectorSize() to get the length.
 *
 * \sa MixtureModelComponentBase, GaussianMixtureModelComponent
 * \ingroup ITKStatistics
 *
 * \wiki
 * \wikiexample{Statistics/ExpectationMaximizationMixtureModelEstimator_2D,2D Gaussian Mixture Model Expectation Maximization}
 * \endwiki
 */

template< typename TSample >
class ExpectationMaximizationMixtureModelEstimator:public Object
{
public:
  /** Standard class typedef */
  typedef ExpectationMaximizationMixtureModelEstimator Self;
  typedef Object                                       Superclass;
  typedef SmartPointer< Self >                         Pointer;
  typedef SmartPointer< const Self >                   ConstPointer;

  /** Standard macros */
  itkTypeMacro(ExpectationMaximizationMixtureModelEstimator,
               Object);
  itkNewMacro(Self);

  /** TSample template argument related typedefs */
  typedef TSample                                 SampleType;
  typedef typename TSample::MeasurementType       MeasurementType;
  typedef typename TSample::MeasurementVectorType MeasurementVectorType;

  /** Typedef requried to generate dataobject decorated output that can
    * be plugged into SampleClassifierFilter */
  typedef GaussianMembershipFunction< MeasurementVectorType >
  GaussianMembershipFunctionType;

  typedef typename GaussianMembershipFunctionType::Pointer
  GaussianMembershipFunctionPointer;

  typedef MembershipFunctionBase< MeasurementVectorType > MembershipFunctionType;
  typedef typename MembershipFunctionType::ConstPointer   MembershipFunctionPointer;
  typedef std::vector< MembershipFunctionPointer >        MembershipFunctionVectorType;
  typedef SimpleDataObjectDecorator<
    MembershipFunctionVectorType >                        MembershipFunctionVectorObjectType;
  typedef typename
  MembershipFunctionVectorObjectType::Pointer MembershipFunctionVectorObjectPointer;

  /** Type of the mixture model component base class */
  typedef MixtureModelComponentBase< TSample > ComponentType;

  /** Type of the component pointer storage */
  typedef std::vector< ComponentType * > ComponentVectorType;

  /** Type of the membership function base class */
  typedef MembershipFunctionBase< MeasurementVectorType >
  ComponentMembershipFunctionType;

  /** Type of the array of the proportion values */
  typedef Array< double > ProportionVectorType;

  /** Sets the target data that will be classified by this */
  void SetSample(const TSample *sample);

  /** Returns the target data */
  const TSample * GetSample() const;

  /** Set/Gets the initial proportion values. The size of proportion
   * vector should be same as the number of component (or classes) */
  void SetInitialProportions(ProportionVectorType & propotion);

  const ProportionVectorType & GetInitialProportions() const;

  /** Gets the result proportion values */
  const ProportionVectorType & GetProportions() const;

  /** typedef for decorated array of proportion */
  typedef SimpleDataObjectDecorator<
    ProportionVectorType >                 MembershipFunctionsWeightsArrayObjectType;
  typedef typename
  MembershipFunctionsWeightsArrayObjectType::Pointer MembershipFunctionsWeightsArrayPointer;

  /** Get method for data decorated Membership functions weights array */
  const MembershipFunctionsWeightsArrayObjectType * GetMembershipFunctionsWeightsArray() const;

  /** Set/Gets the maximum number of iterations. When the optimization
   * process reaches the maximum number of interations, even if the
   * class parameters aren't converged, the optimization process
   * stops. */
  void SetMaximumIteration(int numberOfIterations);

  int GetMaximumIteration() const;

  /** Gets the current iteration. */
  int GetCurrentIteration()
  {
    return m_CurrentIteration;
  }

  /** Adds a new component (or class). */
  int AddComponent(ComponentType *component);

  /** Gets the total number of classes currently plugged in. */
  unsigned int GetNumberOfComponents() const;

  /** Runs the optimization process. */
  void Update();

  /** Termination status after running optimization */
  enum TERMINATION_CODE { CONVERGED = 0, NOT_CONVERGED = 1 };

  /** Gets the termination status */
  TERMINATION_CODE GetTerminationCode() const;

  /** Gets the membership function specified by componentIndex
  argument. */
  ComponentMembershipFunctionType * GetComponentMembershipFunction(int componentIndex) const;

  /** Output Membership function vector containing the membership functions with
    * the final optimized parameters */
  const MembershipFunctionVectorObjectType * GetOutput() const;

protected:
  ExpectationMaximizationMixtureModelEstimator();
  virtual ~ExpectationMaximizationMixtureModelEstimator() {}
  void PrintSelf(std::ostream & os, Indent indent) const;

  bool CalculateDensities();

  double CalculateExpectation() const;

  bool UpdateComponentParameters();

  bool UpdateProportions();

  /** Starts the estimation process */
  void GenerateData();

private:
  /** Target data sample pointer*/
  const TSample *m_Sample;

  int m_MaxIteration;
  int m_CurrentIteration;

  TERMINATION_CODE     m_TerminationCode;
  ComponentVectorType  m_ComponentVector;
  ProportionVectorType m_InitialProportions;
  ProportionVectorType m_Proportions;

  MembershipFunctionVectorObjectPointer  m_MembershipFunctionsObject;
  MembershipFunctionsWeightsArrayPointer m_MembershipFunctionsWeightArrayObject;
};  // end of class
} // end of namespace Statistics
} // end of namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkExpectationMaximizationMixtureModelEstimator.hxx"
#endif

#endif