/usr/include/ITK-4.5/itkFEMFiniteDifferenceFunctionLoad.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkFEMFiniteDifferenceFunctionLoad_hxx
#define __itkFEMFiniteDifferenceFunctionLoad_hxx
#include "itkFEMFiniteDifferenceFunctionLoad.h"
namespace itk
{
namespace fem
{
template <typename TMoving, typename TFixed>
::itk::LightObject::Pointer
FiniteDifferenceFunctionLoad<TMoving, TFixed>::CreateAnother(void) const
{
::itk::LightObject::Pointer smartPtr;
Pointer copyPtr = Self::New();
copyPtr->m_MovingImage = this->m_MovingImage;
copyPtr->m_FixedImage = this->m_FixedImage;
copyPtr->m_MetricRadius = this->m_MetricRadius;
copyPtr->m_MovingSize = this->m_MovingSize;
copyPtr->m_FixedSize = this->m_FixedSize;
copyPtr->m_NumberOfIntegrationPoints = this->m_NumberOfIntegrationPoints;
copyPtr->m_SolutionIndex = this->m_SolutionIndex;
copyPtr->m_SolutionIndex2 = this->m_SolutionIndex2;
copyPtr->m_Gamma = this->m_Gamma;
copyPtr->m_Solution = this->m_Solution;
copyPtr->m_GradSigma = this->m_GradSigma;
copyPtr->m_Sign = this->m_Sign;
copyPtr->m_WhichMetric = this->m_WhichMetric;
copyPtr->m_DifferenceFunction = this->m_DifferenceFunction;
copyPtr->m_DisplacementField = this->m_DisplacementField;
smartPtr = static_cast<Pointer>(copyPtr);
return smartPtr;
}
template <typename TMoving, typename TFixed>
FiniteDifferenceFunctionLoad<TMoving, TFixed>::FiniteDifferenceFunctionLoad()
{
m_SolutionIndex = 1;
m_SolutionIndex2 = 0;
m_Sign = 1.0;
for( unsigned int i = 0; i < ImageDimension; i++ )
{
m_MetricRadius[i] = 1;
}
m_DifferenceFunction = NULL;
m_DisplacementField = NULL;
}
template <typename TMoving, typename TFixed>
void
FiniteDifferenceFunctionLoad<TMoving, TFixed>::InitializeIteration()
{
typedef MeanSquareRegistrationFunctionType defaultRegistrationFunctionType;
if( !m_DifferenceFunction )
{
typename defaultRegistrationFunctionType::Pointer drfp
= defaultRegistrationFunctionType::New();
this->SetMetric(static_cast<FiniteDifferenceFunctionType *>(drfp) );
}
//std::cout << " load sizes " << m_DisplacementField->GetLargestPossibleRegion().GetSize()
// << " image " << m_FixedImage->GetLargestPossibleRegion().GetSize() << std::endl;
m_DifferenceFunction->InitializeIteration();
}
template <typename TMoving, typename TFixed>
void
FiniteDifferenceFunctionLoad<TMoving, TFixed>::InitializeMetric()
{
this->InitializeIteration();
}
template <typename TMoving, typename TFixed>
void
FiniteDifferenceFunctionLoad<TMoving, TFixed>::PrintCurrentEnergy()
{
if( m_DifferenceFunction )
{
std::cout << " energy " << m_DifferenceFunction->GetEnergy() << std::endl;
}
}
template <typename TMoving, typename TFixed>
double
FiniteDifferenceFunctionLoad<TMoving, TFixed>::GetCurrentEnergy()
{
if( m_DifferenceFunction )
{
return m_DifferenceFunction->GetEnergy();
}
else
{
return 0.0;
}
}
template <typename TMoving, typename TFixed>
void
FiniteDifferenceFunctionLoad<TMoving, TFixed>::SetCurrentEnergy(double e)
{
if( m_DifferenceFunction )
{
m_DifferenceFunction->SetEnergy(e);
}
}
template <typename TMoving, typename TFixed>
typename FiniteDifferenceFunctionLoad<TMoving, TFixed>::Float
FiniteDifferenceFunctionLoad<TMoving, TFixed>::EvaluateMetricGivenSolution( ElementContainerType *el, Float step)
{
Float energy = 0.0, defe = 0.0;
vnl_vector_fixed<Float, 2 *ImageDimension> InVec(0.0);
typename Element::VectorType ip, shapef;
typename Element::MatrixType solmat;
typename Element::Float w;
//ElementContainerType::Iterator elt;
if ( (el == NULL) || (el->Size() < 1) )
{
return 10.0;
}
Element::Pointer element = el->GetElement(0);
const unsigned int Nnodes = element->GetNumberOfNodes();
FEMVectorType Gpos;
Gpos.set_size(ImageDimension);
Gpos.fill(0.0);
solmat.set_size(Nnodes * ImageDimension, 1);
for(unsigned int elt = 0; elt < el->Size(); elt++ )
{
element = el->GetElement( elt );
for( unsigned int i = 0; i < m_NumberOfIntegrationPoints; i++ )
{
element->GetIntegrationPointAndWeight(i, ip, w, m_NumberOfIntegrationPoints);
//FIXME REMOVE WHEN ELEMENT NEW IS BASE CLASS
shapef = element->ShapeFunctions(ip);
float solval, posval;
Float detJ = element->JacobianDeterminant(ip);
for( unsigned int f = 0; f < ImageDimension; f++ )
{
solval = 0.0;
posval = 0.0;
for( unsigned int n = 0; n < Nnodes; n++ )
{
posval += shapef[n] * ( ( element->GetNodeCoordinates(n) )[f]);
float nodeval = ( (m_Solution)->GetSolutionValue( element->GetNode(n)->GetDegreeOfFreedom(f), m_SolutionIndex)
+ (m_Solution)->GetSolutionValue( element->GetNode(n)->GetDegreeOfFreedom(f),
m_SolutionIndex2) * step);
solval += shapef[n] * nodeval;
solmat[(n * ImageDimension) + f][0] = nodeval;
}
InVec[f] = posval;
Gpos[f] = posval;
InVec[f + ImageDimension] = solval;
}
float tempe = 0.0;
try
{
this->Fe( Gpos );
tempe = vcl_fabs(0.0);
}
catch( ... )
{
// do nothing we dont care if the metric region is outside the image
}
for( unsigned int n = 0; n < Nnodes; n++ )
{
itk::fem::Element::Float temp = shapef[n] * tempe * w * detJ;
energy += temp;
}
}
defe += element->GetElementDeformationEnergy( solmat );
}
// std::cout << " def e " << defe << " sim e " << energy*m_Gamma << std::endl;
return vcl_fabs( (double)energy * (double)m_Gamma - (double)defe);
}
template <typename TMoving, typename TFixed>
typename FiniteDifferenceFunctionLoad<TMoving, TFixed>::FEMVectorType
FiniteDifferenceFunctionLoad<TMoving, TFixed>::Fe( FEMVectorType Gpos )
{
// We assume the vector input is of size 2*ImageDimension.
// The 0 to ImageDimension-1 elements contain the position, p,
// in the reference image. The next ImageDimension to 2*ImageDimension-1
// elements contain the value of the vector field at that point, v(p).
//
// Thus, we evaluate the derivative at the point p+v(p) with respect to
// some region of the target (fixed) image by calling the metric with
// the translation parameters as provided by the vector field at p.
// ------------------------------------------------------------
VectorType OutVec;
FEMVectorType femVec;
femVec.set_size(ImageDimension);
femVec.fill(0.0);
if( !m_DifferenceFunction || !m_DisplacementField || !m_FixedImage || !m_MovingImage )
{
this->InitializeIteration();
if( !m_DisplacementField || !m_FixedImage || !m_MovingImage )
{
//std::cout << " input data {field,fixed/moving image} are not set " << std::endl;
return femVec;
}
//std::cout << " sizes " << m_DisplacementField->GetLargestPossibleRegion().GetSize() << std::endl;
//std::cout << " image " << m_FixedImage->GetLargestPossibleRegion().GetSize() << std::endl;
}
typedef typename TMoving::IndexType::IndexValueType OIndexValueType;
typename TMoving::IndexType oindex;
typename TMoving::PointType physicalPoint;
unsigned int k;
bool inimage = true;
for( k = 0; k < ImageDimension; k++ )
{
if( vnl_math_isnan(Gpos[k]) || vnl_math_isinf(Gpos[k]) || vcl_fabs(Gpos[k]) > 1.e33 )
{
return femVec;
}
physicalPoint[k] = Gpos[k];
}
m_FixedImage->TransformPhysicalPointToIndex(physicalPoint, oindex);
for( k = 0; k < ImageDimension; k++ )
{
if( oindex[k] > static_cast<OIndexValueType>(m_FixedSize[k] - 1) || oindex[k] < 0 )
{
inimage = false;
}
}
if( !inimage )
{
return femVec;
}
FieldIteratorType nD(m_MetricRadius, m_DisplacementField, m_DisplacementField->GetLargestPossibleRegion() );
nD.SetLocation(oindex);
void* globalData = NULL;
OutVec = m_DifferenceFunction->ComputeUpdate(nD, globalData);
for( k = 0; k < ImageDimension; k++ )
{
if( vnl_math_isnan(OutVec[k]) || vnl_math_isinf(OutVec[k] ) )
{
femVec[k] = 0.0;
}
else
{
femVec[k] = OutVec[k] * m_Sign;
}
}
return femVec;
}
template <typename TMoving, typename TFixed>
void
FiniteDifferenceFunctionLoad<TMoving, TFixed>::ApplyLoad
( Element::ConstPointer element, Element::VectorType & F)
{
// Order of integration
// FIXME: Allow changing the order of integration by setting a
// static member within an element base class.
unsigned int order = GetNumberOfIntegrationPoints();
const unsigned int NumIntegrationPoints = element->GetNumberOfIntegrationPoints(order);
const unsigned int NumDegreesOfFreedom = element->GetNumberOfDegreesOfFreedomPerNode();
const unsigned int NumNodes = element->GetNumberOfNodes();
Element::VectorType force(NumDegreesOfFreedom, 0.0),
ip, gip, force_tmp, shapef;
Element::Float w, detJ;
F.set_size(element->GetNumberOfDegreesOfFreedom() );
F.fill(0.0);
shapef.set_size(NumNodes);
gip.set_size(NumDegreesOfFreedom);
for( unsigned int i = 0; i < NumIntegrationPoints; i++ )
{
element->GetIntegrationPointAndWeight(i, ip, w, order);
shapef = element->ShapeFunctions(ip);
detJ = element->JacobianDeterminant(ip);
for( unsigned int f = 0; f < NumDegreesOfFreedom; f++ )
{
float posval = 0.0;
for( unsigned int n = 0; n < NumNodes; n++ )
{
posval += shapef[n] * ( (element->GetNodeCoordinates(n) )[f]);
}
gip[f] = posval;
}
// Adjust the size of a force vector returned from the load object so
// that it is equal to the number of DOFs per node. If the Fg returned
// a vector with less dimensions, we add zero elements. If the Fg
// returned a vector with more dimensions, we remove the extra dimensions.
force.fill(0.0);
force = this->Fe(gip);
// Calculate the equivalent nodal loads
for( unsigned int n = 0; n < NumNodes; n++ )
{
for( unsigned int d = 0; d < NumDegreesOfFreedom; d++ )
{
itk::fem::Element::Float temp = shapef[n] * force[d] * w * detJ;
F[n * NumDegreesOfFreedom + d] += temp;
}
}
}
}
} // end namespace fem
} // end namespace itk
#endif
|