/usr/include/ITK-4.5/itkFEMLinearSystemWrapper.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkFEMLinearSystemWrapper_h
#define __itkFEMLinearSystemWrapper_h
#include "itkMacro.h"
#include "itkFEMSolution.h"
#include "itkFEMException.h"
#include <vector>
#include <typeinfo>
#include <string>
namespace itk
{
namespace fem
{
/**
* \class LinearSystemWrapper
* \brief Defines all functions required by Solver class to allocate,
* assemble and solve a linear system of equation.
*
* Linear system is defined as A*x=B, where A is a square matrix and F
* is a vector. Member functions are provided to access a specific element
* within A and B. Objects of derived classes should make appropriate calls
* to the numeric library in implementation of virtual functions to assemble
* and solve the linear system.
*
* See comments for each virtual member for more information about how to
* derive a new LinearSystemWrapper class. An example derived class
* LinearSystemWrapperVNL is defined to use VNL sparse matrix representation
* and solver.
*
* \sa Solver::SetLinearSystemWrapper
* \ingroup ITKFEM
*/
class LinearSystemWrapper : public Solution
{
public:
typedef LinearSystemWrapper Self;
typedef Solution Superclass;
typedef Self * Pointer;
typedef const Self * ConstPointer;
typedef std::vector<unsigned int> ColumnArray;
/**
* Constructor for linear system, should perform any initialization that
* is required by derived class.
*/
LinearSystemWrapper() :
m_Order(0), m_NumberOfMatrices(1), m_NumberOfVectors(1), m_NumberOfSolutions(1)
{
}
/* , m_PrimaryMatrixSetupFunction(0), m_PrimaryVectorSetupFunction(0),
m_PrimarySolutionSetupFunction(0) {} */
/**
* Virtual destructor should properly destroy the object and clean up any
* memory allocated for matrix and vector storage.
*/
virtual ~LinearSystemWrapper()
{
}
/**
* Clear all the data (matrices) inside the system, so that the system
* is ready to solve another problem from scratch.
*/
virtual void Clean(void);
/**
* Set the order of the system. All matrices will be of size NxN and
* all vectors will be of size N
* \param N order of the linear system
*/
void SetSystemOrder(unsigned int N)
{
m_Order = N;
}
/**
* Get the order of the system
*/
unsigned int GetSystemOrder() const
{
return m_Order;
}
/**
* Set Index of matrices used by the system
* \param nMatrices Index of matrices used by system
*/
void SetNumberOfMatrices(unsigned int nMatrices)
{
m_NumberOfMatrices = nMatrices;
}
/*
* Set the maximum number of entries permitted in a matrix
* \param matrixIndex index of matrix to set value for
* \param maxNonZeros maximum number of entries allowed in matrix
* \note in general this function does nothing, however it may
* redefined by the derived wrapper if necessary
*/
// virtual void SetMaximumNonZeroValuesInMatrix(unsigned int maxNonZeroValues)
// = 0;
/**
* Get Index of matrices used by system
*/
unsigned int GetNumberOfMatrices() const
{
return m_NumberOfMatrices;
}
/**
* Set Index of vectors used by the system
* \param nVectors Index of vectors used by system
*/
void SetNumberOfVectors(unsigned int nVectors)
{
m_NumberOfVectors = nVectors;
}
/**
* Get Index of vectors used by system
*/
unsigned int GetNumberOfVectors() const
{
return m_NumberOfVectors;
}
/**
* Set Index of solutions used by the system
* \param nSolutions Index of solutions used by system
*/
void SetNumberOfSolutions(unsigned int nSolutions)
{
m_NumberOfSolutions = nSolutions;
}
/**
* Get Index of solutions used by system
*/
unsigned int GetNumberOfSolutions() const
{
return m_NumberOfSolutions;
}
/**
* Initialization of the A matrix. First any existing data for matrix A
* must be be destroyed, and then a new matrix is created in the memory. All
* elements in A must be set to zero.
*
* \param matrixIndex index of matrix to initialize
*/
virtual void InitializeMatrix(unsigned int matrixIndex = 0) = 0;
/**
* Check to see if matrix is initialized
* \param matrixIndex index of matrix to examine
*/
virtual bool IsMatrixInitialized(unsigned int matrixIndex = 0) = 0;
/**
* Free the memory from a matrix
* \param matrixIndex index of matrix to destroy
*/
virtual void DestroyMatrix(unsigned int matrixIndex = 0) = 0;
/**
* Initialization of the a vector. First any existing data for vector B
* must be destroyed, then new vector is created in the memory. All
* elements in B must be set to zero.
*
*/
virtual void InitializeVector(unsigned int vectorIndex = 0) = 0;
/**
* Check to see if vector is initialized
* \param vectorIndex vector of index to examine
*/
virtual bool IsVectorInitialized(unsigned int vectorIndex = 0) = 0;
/**
* Free the memory from a vector
* \param vectorIndex index of vector to destroy
*/
virtual void DestroyVector(unsigned int vectorIndex = 0) = 0;
/**
* Initialization of a solution vector. Existing memory must be destroyed
* and the new solution vector is created in memory. All values should
* be set to zero.
* \param solutionIndex index of solution vector to initialize
*/
virtual void InitializeSolution(unsigned int solutionIndex = 0) = 0;
/**
* Check to see if solution vector is initialized
* \param solutionIndex index of solution vector to examine
*/
virtual bool IsSolutionInitialized(unsigned int solutionIndex = 0) = 0;
/** Free the memory from a solution vector
* \param solutionIndex index of solution vector to destroy
*/
virtual void DestroySolution(unsigned int solutionIndex = 0) = 0;
/**
* Virtual function to get a value of a specific element of a matrix.
* \param i row of the element
* \param j column of the element
* \param matrixIndex index of matrix to get value from
*/
virtual Float GetMatrixValue(unsigned int i, unsigned int j, unsigned int matrixIndex = 0) const = 0;
/**
* Virtual function to set a value of a specific element of the A matrix.
* \param i row of the element
* \param j column of the element
* \param value new value of the element
* \param matrixIndex index of matrix to set value in
*/
virtual void SetMatrixValue(unsigned int i, unsigned int j, Float value, unsigned int matrixIndex = 0) = 0;
/**
* Virtual function to add a value to a specific element of the A matrix.
* \param i row of the element
* \param j column of the element
* \param value value to add to the existing element
* \param matrixIndex index of matrix to add value to
*/
virtual void AddMatrixValue(unsigned int i, unsigned int j, Float value, unsigned int matrixIndex = 0) = 0;
/**
* Returns the column index (zero based) of the i-th non zero
* (non allocated)element in a given row of A matrix. This function
* is useful for optimizations when sparse matrices are used. Note
* that the value of an element with returned column index may actually
* be equal zero.
* \param row Row number
* \param cols Which element in that row. Can range from 0 to number of
* elements allocated in a row. If this is out of range, the
* function returns -1.
* \param matrixIndex Index of matrix (defaults to 0)
*/
virtual void GetColumnsOfNonZeroMatrixElementsInRow(unsigned int row, ColumnArray & cols,
unsigned int matrixIndex = 0);
/**
* Virtual function to get a value of a specific element of the B vector.
* \param i row of the element
* \param vectorIndex index of vector to get value from
*/
virtual Float GetVectorValue(unsigned int i, unsigned int vectorIndex = 0) const = 0;
/**
* Virtual function to set a value of a specific element of the B vector.
* \param i row of the element
* \param value new value of the element
* \param vectorIndex index of vector to set value in
*/
virtual void SetVectorValue(unsigned int i, Float value, unsigned int vectorIndex = 0) = 0;
/**
* Virtual function to add a value to a specific element of the B vector.
* \param i row of the element
* \param value value to add to the existing element
* \param vectorIndex index of vector to add value to
*/
virtual void AddVectorValue(unsigned int i, Float value, unsigned int vectorIndex = 0) = 0;
/**
* Virtual function to set a value of specific element of the solution
* vector.
* \param i element Index in solution vector
* \param value new value of the element
* \param solutionIndex index of solution vector to set value in
*/
virtual void SetSolutionValue(unsigned int i, Float value, unsigned int solutionIndex = 0) = 0;
/**
* Virtual function to add a value of specific element of the solution
* vector.
* \param i element Index in solution vector
* \param value new value of the element
* \param solutionIndex index of solution vector to add value to
*/
virtual void AddSolutionValue(unsigned int i, Float value, unsigned int solutionIndex = 0) = 0;
/**
* Solves the linear system and creates the solution vector, which can later
* be accessed via GetSolutionValue(i,SolutionIndex) member function. Here all the major processing is
* done with calls to external numeric library.
* \note This function can only be called after the linear system was
* properly assembled.
*/
virtual void Solve(void) = 0;
/**
* Swaps access indices of any 2 matrices in the linear system
* \param matrixIndex1 index of a matrix to swap
* \param matrixIndex2 index of matrix to swap with
*/
virtual void SwapMatrices(unsigned int matrixIndex1, unsigned int matrixIndex2) = 0;
/**
* Copies the content of source matrix to destination matrix. Any existing
* data in destination matrix is overwritten.
*
* \param matrixIndex1 index of a matrix that will be copied
* \param matrixIndex2 index of matrix to copy to
*/
virtual void CopyMatrix(unsigned int matrixIndex1, unsigned int matrixIndex2);
/**
* Swaps access indices of any 2 vectors in the linear system
* \param vectorIndex1 index of a vector to swap
* \param vectorIndex2 index of vector to swap with
*/
virtual void SwapVectors(unsigned int vectorIndex1, unsigned int vectorIndex2) = 0;
/**
* Swaps access indices of any 2 solution vectors in the linear system
* \param solutionIndex1 index of a solution vector to swap
* \param solutionIndex2 index of solution vector to swap with
*/
virtual void SwapSolutions(unsigned int solutionIndex1, unsigned int solutionIndex2) = 0;
/**
* Multiplies all elements of a matrix by a scalar
* \param scale scalar to multiply all matrix values by
* \param matrixIndex index of matrix to modify
*/
virtual void ScaleMatrix(Float scale, unsigned int matrixIndex = 0);
/**
* Multiplies all elements of a vector by a scalar
* \param scale scalar to multiply all vector values by
* \param vectorIndex index of vector to modify
*/
void ScaleVector(Float scale, unsigned int vectorIndex = 0);
/**
* Multiplies all elements of a solution by a scalar
* \param scale scalar to multiply all solution values by
* \param solutionIndex index of solution to modify
*/
void ScaleSolution(Float scale, unsigned int solutionIndex = 0);
/**
* Perform a matrix*matrix operation and store the result in the linear system
* \param leftMatrixIndex index of left matrix
* \param rightMatrixIndex index of right matrix
* \param resultMatrixIndex index of matrix where solution is stored
*/
virtual void MultiplyMatrixMatrix(unsigned int resultMatrixIndex, unsigned int leftMatrixIndex,
unsigned int rightMatrixIndex) = 0;
/**
* Adds two matrices storing the result in the first matrix.
*
* \param matrixIndex1 index of a matrix to add the other matrix to
* \param matrixIndex2 index of matrix to add
*/
virtual void AddMatrixMatrix(unsigned int matrixIndex1, unsigned int matrixIndex2);
/**
* Adds two vectors storing the result in the first vector.
*
* \param vectorIndex1 index of a vector to add the other vector to
* \param vectorIndex2 index of vector to add
*/
virtual void AddVectorVector(unsigned int vectorIndex1, unsigned int vectorIndex2);
/**
* Perform a matrix*vector operation and store the result in the linear system
* \param matrixIndex index of matrix to multiply
* \param vectorIndex index of vector to multiply
* \param resultVectorIndex index of vector where result is store
*/
virtual void MultiplyMatrixVector(unsigned int resultVectorIndex, unsigned int matrixIndex, unsigned int vectorIndex);
/**
* Perform a matrix*solution operation and store the result in the linear system
* \param matrixIndex index of matrix to multiply
* \param solutionIndex index of solution to multiply
* \param resultVectorIndex index of vector where result is store
*/
virtual void MultiplyMatrixSolution(unsigned int resultVectorIndex, unsigned int matrixIndex, unsigned int solutionIndex);
/**
* Copy a solution vector to a vector
* \param solutionIndex index of solution vector to copy
* \param vectorIndex index of vector to copy solution to
*/
virtual void CopySolution2Vector(unsigned int solutionIndex, unsigned int vectorIndex) = 0;
/**
* Copy a vector to a solution vector
* \param vectorIndex index of a vector to copy
* \param solutionIndex index of a solution to copy the solution to
*/
virtual void CopyVector2Solution(unsigned int vectorIndex, unsigned int solutionIndex) = 0;
/**
* Copy a vector
* \param vectorSource index of a vector to copy
* \param vectorDestination index to copy the vector to
*/
virtual void CopyVector(unsigned int vectorSource, unsigned int vectorDestination);
/**
* Remove all zeros from a matrix
* \param matrixIndex index of matrix to remove zeros from
* \param tempMatrixIndex index of matrix to use for temp storage space
* \note an extra matrix must be allocated by the solver in order to use this method
*/
virtual void OptimizeMatrixStorage(unsigned int matrixIndex, unsigned int tempMatrixIndex);
/**
* Reorder the Degrees of Freedom in order to reduce bandwidth of matrix
* \param matrixIndex index of matrix to examine
* \param newNumbering vector of new degree of freedom ordering
*/
virtual void ReverseCuthillMckeeOrdering(ColumnArray & newNumbering, unsigned int matrixIndex = 0);
protected:
/** Order of linear system */
unsigned int m_Order;
/**
* Number of matrices used by system
*/
unsigned int m_NumberOfMatrices;
/**
* Number of vectors used by system
*/
unsigned int m_NumberOfVectors;
/**
* Number of solutions used by system
*/
unsigned int m_NumberOfSolutions;
/*
* Function used to prepare primary matrix for numerical solving
*/
// void (*m_PrimaryMatrixSetupFunction)(LinearSystemWrapper *lsw);
/*
* Function used to prepare primary vector for numerical solving
*/
/* void (*m_PrimaryVectorSetupFunction)(LinearSystemWrapper *lsw);*/
/*
* Function used to prepare primary matrix for numerical solving
*/
/* void (*m_PrimarySolutionSetupFunction)(LinearSystemWrapper *lsw); */
private:
/**
* matrix reordering utility
*/
void CuthillMckeeOrdering(ColumnArray & newNumbering, int startingRow, unsigned int matrixIndex = 0);
void FollowConnectionsCuthillMckeeOrdering(unsigned int rowNumber, ColumnArray & rowDegree,
ColumnArray & newNumbering, unsigned int nextRowNumber,
unsigned int matrixIndex = 0);
/** Copy constructor is not allowed. */
LinearSystemWrapper(const LinearSystemWrapper &);
/** Asignment operator is not allowed. */
const LinearSystemWrapper & operator=(const LinearSystemWrapper &);
};
class ITK_ABI_EXPORT FEMExceptionLinearSystem : public FEMException
{
public:
/**
* Constructor. In order to construct this exception object, four parameters
* must be provided: file, lineNumber, location and a detailed description
* of the exception.
*/
FEMExceptionLinearSystem(const char *file, unsigned int lineNumber, std::string location, std::string moreDescription);
/** Virtual destructor needed for subclasses. Has to have empty throw(). */
virtual ~FEMExceptionLinearSystem()
throw ( )
{
}
/** Type related information. */
itkTypeMacro(FEMExceptionLinearSystem, FEMException);
};
class ITK_ABI_EXPORT FEMExceptionLinearSystemBounds : public FEMException
{
public:
/**
* Constructor. In order to construct this exception object, five parameters
* must be provided: file, lineNumber, location and a detailed description
* of the exception, and the invalid index
*/
FEMExceptionLinearSystemBounds(const char *file, unsigned int lineNumber, std::string location,
std::string moreDescription,
unsigned int index1);
/**
* Constructor. In order to construct this exception object, six parameters
* must be provided: file, lineNumber, location and a detailed description
* of the exception, the first index, and the second index */
FEMExceptionLinearSystemBounds(const char *file, unsigned int lineNumber, std::string location,
std::string moreDescription, unsigned int index1,
unsigned int index2);
/** Virtual destructor needed for subclasses. Has to have empty throw(). */
virtual ~FEMExceptionLinearSystemBounds()
throw ( )
{
}
/** Type related information. */
itkTypeMacro(FEMExceptionLinearSystem, FEMException);
};
}
} // end namespace itk::fem
#endif // #ifndef __itkFEMLinearSystemWrapper_h
|